

Clean Energy Communities Energy Study

Prepared for:

Village of Medina 600 Main St Medina, NY 14103

Audit No: CEC300354

Submitted by:

L&S Energy Services 58 Clifton Country Road, Suite 203 Clifton Park, NY 12065

Date: 12/9/2024

For questions regarding this report, please contact <u>CEC@nyserda.ny.gov</u>.

We hope the findings of this report will assist you in making decisions about energy efficiency improvements in your facility. Thank you for your participation in this program.

NOTICE

This report was prepared pursuant to the Flexible Technical Assistance Program (Hereinafter "FlexTech") administered by the New York State Energy Research and Development Authority (hereinafter "NYSERDA"). The opinions expressed in this report do not necessarily reflect those of NYSERDA or the State of New York, and reference to any specific product, service, process, or method does not constitute an implied or expressed recommendation or endorsement of it by NYSERDA or the State of New York. Further, NYSERDA and the State of New York make no warranties or representations, expressed or implied, as to the fitness for a particular purpose or merchantability of any product, apparatus, or service, or the usefulness, completeness, or accuracy of any processes, methods, energy savings, or other information contained, described, disclosed, or referred to in this report. NYSERDA and the State of New York make no representation that the use of any product, apparatus, process, method, or other information will not infringe privately-owned rights and will assume no responsibility for any loss, injury, or damage resulting from, or occurring in connection with, the use of information contained, described, disclosed, disclosed, or referred to in this report.

State of New York

Kathy Hochul, Governor

New York State Energy Research and Development Authority

Consultant Disclaimer

The opinions expressed in this report do not necessarily reflect those of L&S Energy Services, C.J. Brown Energy P.C., The Daylight Savings Company, or Taitem Engineering P.C. (the Consultants), and reference to any specific product, service, process, or method does not constitute an implied or expressed recommendation or endorsement of it by the Consultants. Further, the Consultants make no warranties or representations, expressed or implied, as to the fitness for a particular purpose or merchantability of any product, apparatus, or service, or the usefulness, completeness, or accuracy of any processes, methods, energy savings, or other information contained, described, disclosed, or referred to in this report. The Consultants make no representation that the use of any product, apparatus, process, method, or other information will not infringe privately-owned rights and will assume no responsibility for any loss, injury, or damage resulting from, or occurring in connection with, the use of information contained, described, disclosed, or referred to in this report.

This report was prepared by:

C.J. Brown Energy, P.C.

4245 Union Rd, Buffalo, NY 14225

(716) 565-9190

Table of Contents

Executive Summary	.1
Present Energy Use and Cost	
Benchmarking Your Building	
Project Summary Table	
Note on Energy Project Implementation Costs Greenhouse Gas Reductions for the Recommended Measures	
Existing Conditions	
Lighting Systems	
Heating Ventilating and Air Conditioning Systems	
Water Heating System	.8
Energy Efficiency Measure Descriptions	.9
EEM-1 Interior Lighting Retrofit	
EEM-2 Implement Deeper Setback	
EEM-3 Insulate Heating And Domestic Hot Water Pipes EEM-4 Building Airflow Reduction	
EEM-5 Install Insulated Doors	
EEM-6 Exterior Lighting Retrofit	14
EEM-7 Insulate Building Envelope	
EEM-8 Install Double Glazing EEM-9 Install A Tankless Water Heater	
EEM-10 Switch Fuels For Heating Water	
Building Electrification Measures	
BE-1 Install Clean Heating System - Air Source Heat Pump	20
Appendix A	21
Equipment Inventory	
Appendix B	22
Energy Use and Cost Summary	
Utility Bill Data	
Appendix C	
EEM Calculations	
Assumptions/Data Used to Develop Energy and Dollar Savings Figures	
Clean Heating and Cooling Technology Overview	
Appendix F	
Energy Savings Summaries	45

Executive Summary

In consideration of NYSERDA's objectives, the primary focus of this Energy Study is the evaluation of energy efficient electric building technologies. Limited opportunities that reduce fossil fuel use may be considered, however, the evaluation of new systems and equipment that utilize fossil fuels is excluded from the analysis contained herein and as such will not be recommended as energy efficiency improvements. The replacement of systems and equipment that utilize fossil fuels are not eligible for Clean Energy Communities Funding.

This study was performed to understand how your facility is currently using energy and identify ways to reduce energy use and operating expenses.

Specific areas of concern that were identified by the owner for evaluation include drafty windows throughout both buildings. The Firehouse in particular gets very cold in the winter, suspected due to poor insulation. Additionally, the kitchen window in the Firehouse lets in water, suggesting faulty seals, that has resulted in some water damage to the inside windowsill.

The following energy efficiency measures (EEMs) and observations to reduce energy use were identified during the site visit:

• Interior Lighting Retrofit - Replace all interior lamps with LEDs.

• Implement Deeper Setback - Program thermostats to a deeper setback temperature during unoccupied hours.

• Insulate Heating and Domestic Hot Water Pipes - Insulate piping in unconditioned spaces to help heating water and domestic hot water retain its heat until it is used.

• Building Airflow Reduction - Reduce air infiltration with airsealing around exterior doors and windows.

• Install Insulated Doors - Replace the poorly insulated glass doors on the catwalk with better insulated models to reduce heat loss.

• Exterior Lighting Retrofit - Replace all exterior lamps with LEDs.

• Insulate Building Envelope - Insulate the exterior wall of the Police Chief Office to reduce heat loss in the room.

• Install Double Glazing - Replace the Firehouse kitchen window with a better insulating and better fitting model to reduce heat loss and prevent further water damage.

• Install a Tankless Water Heater – Replace the Village Hall natural gas domestic hot water heating system with an electric tankless water heater.

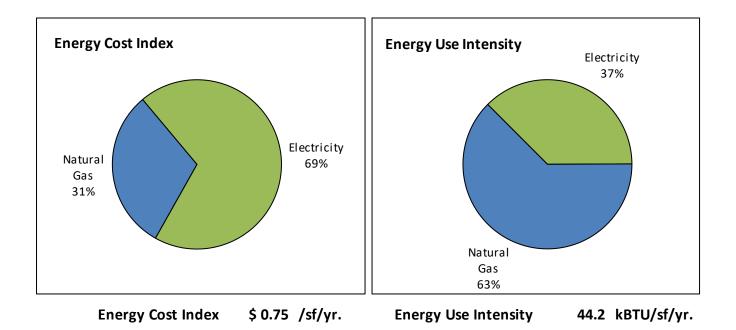
• Switch Fuels for Heating Water - Replace the natural gas tankless water heater in the Firehouse with an electric model.

• Install Clean Heating System - Air Source Heat Pump - Replace the natural gas heating system with an air source heat pump to electrify a portion of the building's heating system.

These Energy Efficiency Measures are summarized in the Project Summary Table below and discussed in more detail in the Energy Efficiency Measures section of this report.

Present Energy Use and Cost

The energy use for your facility has been compiled to calculate the Energy Cost Index and the Energy Use Intensity.


- The Energy Cost Index (ECI) is the total cost of energy divided by the conditioned floor area and is shown as dollars per square foot per year.
- The Energy Use Intensity (EUI) is the total heat content of energy divided by the conditioned floor area and is shown in units of one thousand Btus (kBtu) per square foot per year.

Energy Cost Index

Electricity	\$ 11,154	\$ 0.52	\$/sq.ft./year
Natural Gas	\$ 4,947	\$ 0.23	\$/sq.ft./year
Total Cost	\$ 16,102	\$ 0.75	\$/sq.ft./year

Energy Use Intensity

Electricity	355	mmBtu	16.6	kBtu/sq.ft./year
Natural Gas	593	mmBtu	27.7	kBtu/sq.ft./year
Total Energy Use	947	mmBtu	44.2	kBtu/sq.ft./year

Benchmarking Your Building

The EPA's ENERGY STAR Portfolio Manager website allows you to upload energy use information and compare your energy use to that of other buildings of similar use. Portfolio Manager generates a benchmark score that indicates your performance. A benchmark score of 50 indicates average performance while a score of 75 or higher would earn the Energy Star designation. You can use the website to track your energy use over time and document the success of your energy conservation efforts.

You can find the Portfolio Manager at:

https://www.energystar.gov/buildings/facility-owners-and-managers/existingbuildings/use-portfolio-manager

Project Summary Table

	Energy Efficiency Measures			\$	Savings & Co	ost
EEM #	Measure Status	EEM Description	Reduction in Greenhouse Gas Emissions (Lbs. CO2e/Year)	Total Annual Savings	Install Costs	Simple Payback (years)
EEM-1	R	Interior Lighting Retrofit	11,758	\$ 1,582	\$ 3,406	2.2
EEM-2	R	Implement Deeper Setback	1,143	\$ 75	\$ 400	5.4
EEM-3	R	Insulate Heating And Domestic Hot Water Pipes	277	\$ 18	\$ 182	10.0
EEM-4	R	Building Airflow Reduction	2,924	\$ 192	\$ 2,196	11.4
EEM-5	R	Install Insulated Doors	1,011	\$ 66	\$ 790	12.0
EEM-6	R	Exterior Lighting Retrofit	356	\$ 19	\$ 300	15.5
EEM-7	R	Insulate Building Envelope	228	\$ 15	\$ 236	15.9
EEM-8	RNE	Install Double Glazing	300	\$ 20	\$ 998	50.7
EEM-9	NR	Install A Tankless Water Heater	466	\$ 25	\$ 3,176	124.8
EEM-10	NR	Switch Fuels For Heating Water	212	\$9	\$ 3,176	361.2
	•	All Energy Efficiency Measures:	18,673	\$ 2,021	\$ 14,860	7.4
		Total of Recommended Measures:	17,995	\$ 1,987	\$ 8,508	4.3

Measure Status Explanation:

(I) - Implemented: Measure has been installed

(R) - Recommended: Energy saved with a reasonable payback (within measure life)

(NR) - Not Recommended: When payback exceeds measure life and equipment is not at end of life

(RME) - Recommended Mutually Exclusive: Energy is saved and recommended over other options for a particular measure

(ME) - Mutually Exclusive: Non-recommended option(s) to a Recommended Mutually Exclusive (RME) measure

(RNE) - Recommended Non-Energy: Recommended based on other, non-energy factors such as comfort, water savings or equipment at end of life

(RS) - Recommended for Further Study: For measures that require analysis beyond the scope of this program.

(BE) - Building Electrification: Measures that should be considered based on greenhouse gas reductions, eliminating on-site use of fossil fuels, or other sustainability factors

Building Electrification Measures			\$ Savings & Cost					
EEM #	Measure Status	Building Electrification Measure Descriptions	Reduction in Greenhouse Gas Emissions (Lbs. CO2e/Year)	Total Annual Savings	Install Costs	Simple Payback (years)	Estimated Incentives	Simple Payback after incentives
BE-1	NR	Install Clean Heating System - Air Source Heat Pump	(1,572)	(\$ 568)	\$ 13,192	n/a	\$ 3,720	n/a
		All Measures:	(1,572)	(\$ 568)	\$ 13,192	n/a	\$ 3,720	n/a
		Total of Recommended Measures:	0	\$ 0	\$ 0		\$ 0	

Simple Payback Period is the length of time it will take to recover the initial capital investment from the energy savings of the new equipment. The Simple Payback Period is calculated by dividing the initial installed cost by the annual energy cost savings. For example, an energy-saving measure that costs \$5,000 and saves \$2,500 per year has a Simple Payback Period of \$5,000 divided by \$2,500 or 2 years.

Note on Energy Project Implementation Costs

The "Project Costs" shown in this report for each Energy Efficiency Measure represent an initial estimate of the implementation cost. Unless otherwise noted in the Energy Efficiency Measure description, these costs reflect a preliminary estimate of material and labor. There may be other variables associated with your specific project that will impact the true project costs that the study may not capture. Other external factors that may impact true project costs and payback include material availability, vendor scheduling, access within the facility, general inflation, available measure incentives, and other unknown factors and conditions. For measures which significantly impact your building's usage, it is also important to determine any potential utility rate and/or tariff changes, those of which are beyond the scope of this report. We recommend that you seek several quotes from qualified vendors prior to implementation.

Greenhouse Gas Reductions for the Recommended Measures

Reducing your energy use will reduce the release of greenhouse gases associated with the use of fossil fuels and the production of electricity. If the measures recommended in this report are implemented, the following reductions of greenhouse gases can be expected:

Electricity	13.092	kWh =	15 187	pounds CO2 equivalent
Natural Gas	240	therm =		pounds CO2 equivalent
	- <u>-</u>	_		pounds CO2 equivalent
			9.5%	reduction

Emissions factors are used to translate the energy savings data from energy efficiency and renewable generation projects into annual GHG emissions reduction values. NYSERDA uses emission factors derived from U.S. Environmental Protection Agency (EPA) emission coefficients to calculate emissions from onsite fuel. The CO2e values represent aggregate CO2, CH4, and N2O emissions.

Existing Conditions

The site is comprised of two buildings: the Village Hall and the Firehouse serving the Village of Medina. The Village Hall holds the Police Department, Court, and Division of Code Enforcement on the 1st, 2nd, and 3rd floors, respectively. The 2nd floor also holds the Police Chief's office, the Police Gym, and the Village Clerk-Treasurer's office. The Firehouse holds the Fire Department: the garage on the ground floor, and offices, training rooms, break rooms, and storage on the second floor.

The site consists of two buildings totaling 21,411 square feet. The first building, the Village Hall, was originally constructed in 1908 and has 3 floors. The interior walls are finished plaster and drywall with unknown insulation, and the exterior walls have the well maintained original sandstone finish. The Firehouse, built in the 19050's, has similar interior walls, but with an exterior brick finish. Both buildings have a flat roof with a membrane exterior surface, fiberglass insulation and an interior finished ceiling of acoustic tile.

The Village Hall windows are mostly single hung, single pane windows with wooden frames. There are some decorative single pane fixed windows. The Firehouse windows are all fixed double pane. All exterior doors are steel, except for the front entrance double doors, which are wood. Many of the exterior doors have damaged weatherstripping.

Major energy end uses include the heating, cooling, and interior lighting systems. The first floor of the Village Hall and the entire Firehouse is occupied 24/7 by some emergency response staff. As a result, the HVAC system maintains occupied conditions in these areas 24/7. On the second and third floors of the Village Hall, day-to-day staff is present during regular working hours. In these areas, the HVAC maintains occupied conditions for 8 hours on weekdays, totaling 40 hours a week.

Winter space temperatures are on average maintained at 66°F and are setback to 65°F during unoccupied periods in applicable areas. In the summer, temperatures are maintained on average at 71°F during occupied hours and 75°F during unoccupied periods. All areas utilize programmable thermostats except for the Fire Truck Bay, which is on a nonprogrammable heat-only thermostat.

Lighting Systems

The interior lighting systems of these buildings mostly rely on incandescent lamps. The exterior lighting systems, while mostly LED, have a couple faulty photocell sensors.

Heating Ventilating and Air Conditioning Systems

The Village Hall uses three furnaces and a boiler to meet heating needs, while the Firehouse uses a single furnace and a unit heater in the garage. All heating systems are natural gas fired. There are three air conditioning units serving cooling to the majority of both buildings.

Water Heating System

The Village hall uses a storage type natural gas fired domestic hot water heating system, and the Firehouse uses a tankless natural gas fired system.

See Appendix D for further details regarding the energy calculations performed for this study.

Energy Efficiency Measure Descriptions

EEM-1 Interior Lighting Retrofit

Electric Savings:	\$ 1,778		kWh per year kW demand
Fuel Savings:	(\$ 196)	(25.4)	MMBtu fuel per year Natural Gas
Total Annual Savings:	\$ 1, 582		
Project Cost:	\$ 3,406		
Simple Payback:	2.2	years	

Introduction:

Lighting usually represents a major portion of a facility's electricity use, and given the continuous hours of use, it contributes to the peak electric demand each month. Taking steps to improve the efficiency of your lighting will reduce both the total electric energy used and lower your peak electric demand. Lighting retrofit projects now consist of installing Light Emitting Diode, or LED, light sources in all fixtures. Some fixtures, such as indoor fluorescent fixtures, can be retrofitted to use T-8 replacement lamps, but most fixtures should simply be replaced with LED fixtures. Energy savings of 50% are common when replacing fluorescent and HID light sources with LED sources.

LED light sources for interior applications should list their color on the label; this is expressed in degrees Kelvin, or °K. Lights with higher values will be more blue in color and may not be appropriate for indoor use. Look for values between 3500 and 4000°K for "cool white" light. For spaces where a warmer color of light is desired, select lights with values between 2700 and 3000°K.

Recommendation:

Retrofit interior fluorescent fixtures and replace other fixtures as indicated in the lighting calculations and the Equipment Inventory, both of which may be found in the Appendix.

LED lamps and fixtures should be Energy Star labeled or listed with the Design Lights Consortium (DLC). Your utility incentive program may have other requirements that must be met in order to qualify for incentives.

EEM-2 Implement Deeper Setback

Electric Savings:	\$ 2		36 0.0	kWh per year kW demand
Fuel Savings:	\$ 72		9.4	MMBtu fuel per year Natural Gas
Total Annual Savings:	\$ 75			
Project Cost:	\$ 400			
Simple Payback:	5.4	years		

Introduction:

Proper temperature control is important in order to minimize energy costs. Maintaining space temperatures within a reasonable range during occupied periods and reliably reducing the amount of heating and cooling energy during unoccupied periods should be the goal for your temperature control system.

Facilities that are occupied only on weekdays can maintain a lower space temperature setpoint on weekends. Programmable thermostats are available that permit full 7 day schedules to be defined. 5-2 or 5-1-1 thermostats use the same schedule for all weekdays and provide one or two schedules for weekend days.

Recommendation:

Reprogram the thermostats to setback temperature of 60 degrees for heating and 80 degrees for cooling during unoccupied periods in spaces that aren't used 24/7. This should include the 2nd and 3rd floors of the Village Hall.

EEM-3 Insulate Heating And Domestic Hot Water Pipes

Electric Savings:	(\$ 0)		0 0.0	kWh per year kW demand
Fuel Savings:	\$ 18		2.4	MMBtu fuel per year Natural Gas
Total Annual Savings:	\$ 18			
Project Cost:	\$ 182			
Simple Payback:	10.0	years		

Introduction:

Heat is distributed through the building by pipes containing hot water or steam. Heating distribution system pipes lose heat to the surrounding space. If the heat is lost to an area that does not require heating, the drop in system efficiency can be significant. Un-insulated pipes in conditioned space may also overheat the space, wasting energy and causing comfort problems. All heating distribution system pipes located in unconditioned space should be insulated.

Domestic hot water (DHW) is water that is heated for hand washing, showering, dish washing, laundry, etc. Domestic hot water pipes lose heat to the surrounding space. This loss is significant in facilities with recirculating hot water systems, or in facilities that use hot water for a large portion of the day. In a recirculating system, all domestic hot water pipes should be insulated. In a non-recirculating system, domestic hot water pipes within eight feet of the water heater should be insulated.

Recommendation:

Insulate all exposed heating pipes that are located in unconditioned space. Insulate the first eight feet of domestic hot water piping after the water heater. Insulation thickness should be per the New York State Energy Conservation Construction Code, and should be pre-formed fiberglass pipe insulation with protective jacketing.

Install 1 in. insulation on (8 ft.) of 0.75 in. Dull Copper DHW pipe on the water heater in the Village Hall, 1 in. insulation on (8 ft.) of 0.75 in. Dull Copper DHW pipe on the water heater in the Firehouse, and 1 in. insulation on (10 ft.) of 0.75 in. Dull Copper Hot Water pipe on the boiler in the Village Hall.

EEM-4 Building Airflow Reduction

Electric Savings:	\$ O	0 0.0	kWh per year kW demand
Fuel Savings:	\$ 192	24.9	MMBtu fuel per year Natural Gas
Total Annual Savings:	\$ 192		
Project Cost:	\$ 2,196		
Simple Payback:	11. 4	years	

Introduction:

Reducing air infiltration is vital to creating a more energy efficient building. The purpose of air sealing is to create an effective air tight seal on the building envelope. This will reduce the amount of air flow and heat loss from conditioned to un-conditioned space. Factors that cause high air flow rates include the size and number of openings that connect the conditioned and unconditioned spaces and pressure differences between the interior and exterior of the building. The differences in pressures are typically caused by stack effect, wind, and temperature differences between the inside and outside of the building. An air sealing contractor will use special diagnostic tools to pinpoint and seal hidden air leaks, typically hidden under the attic insulation.

Sealing the largest openings at the highest and lowest levels first is the most effective way to reduce unwanted air flow. These types of openings may include attic access doors, large mechanical chases that house ductwork and vent flues, and wall bypasses. Wall bypasses are holes created by irregular framing and can be found in interior and exterior wall systems. Smaller openings from wire holes, plumbing lines, and gaps around windows, doors and chimney flues are equally as important. Materials that should be considered for different applications are caulks, expanding foam, non-expanding foam, weather-stripping, and rigid insulation board.

Recommendation:

All exterior man doors should have damaged weatherstripping replaced. All garage doors also have damaged weatherstripping and thresholds. Replace the weather stripping around the sides and bottom of each garage door. Also install threshold seal strips along the garage floor ground where the bottom of the door closes. The new strips should be aligned to ensure a tight seal.

Additionally, most of the windows in both buildings have gaps in caulk seams. Remove and replace cracked caulkwork around all windows.

EEM-5 Install Insulated Doors

Electric Savings:	\$ 2		38 0.0	kWh per year kW demand
Fuel Savings:	\$ 64		8.3	MMBtu fuel per year Natural Gas
Total Annual Savings:	\$ 66 \$ 700			
Project Cost:	\$ 790			
Simple Payback:	12.0	years		

Introduction:

Single pane wooden frame or metal frame doors can be very inefficient. Heat loss due to conduction through single pane glass can be very high. Also heat loss due to air infiltration past loose fitting or worn out frames can increase the cost of energy to heat this air. Drafts can also occur causing discomfort to occupants. The installation of insulated replacement doors will reduce these heating loads.

Energy efficient doors are built with thermal breaks and insulated cores to reduce conduction heat losses. Weather stripping along the perimeter of the door minimizes the infiltration of unconditioned air.

Recommendation:

Replace the two glass doors on the catwalk connecting the Firehouse and the Village Hall. The new door should be tight fitting and completely caulked around the wall seams. Weatherstripping should be installed around all edges. The bottom of each door should have sturdy door sweeps installed. The door itself should be filled with a urethane or polystyrene foam. The listed R-value should be no lower than 5. Any glazed area should be double glazed with safety glass, and should comprise no more than 25% of the total door area.

EEM-6 Exterior Lighting Retrofit

Electric Savings:	\$ 19	-	307 0.0	kWh per year kW demand
Fuel Savings:	\$ 0	(0.0	MMBtu fuel per year
Total Annual Savings: Project Cost: Simple Payback:	\$ 19 \$ 300 15.5	years		

Introduction:

High Intensity Discharge (HID) fixtures are often used outdoors for parking areas, grounds illumination and outdoor security lighting. HID fixtures may use mercury vapor, high pressure sodium or metal halide lamps that resemble incandescent lamps in outward appearance but require a ballast to operate. Of these, high pressure sodium and metal halide are the most common. All HID lamp types are point light sources, so HID fixtures usually have a reflector to redirect light into the desired distribution pattern. HID fixtures do not provide very uniform lighting in exterior applications.

Light Emitting Diode (LED) fixtures use an array of LEDs, which are solid state devices that produce light. The array is designed to distribute light into the desired distribution pattern, utilizing the directional nature of LEDs to achieve very uniform light levels without "hot spots" that are common with HID fixtures. This enables LED fixtures to provide the required illumination levels with lower overall energy use than traditional HID fixtures. LED exterior fixtures have replaced HID fixtures in the marketplace because they are more efficient, more compact, and they last longer.

Recommendation:

The two exterior lighting fixtures were observed as powered during the day, suggesting faulty photocell sensors. Replace selected exterior fixtures as indicated in the lighting calculations and the Equipment Inventory, both of which may be found in the Appendix.

LED fixtures should be Energy Star labeled or listed with the Design Lights Consortium (DLC). Your utility incentive program may have other requirements that must be met in order to qualify for incentives.

EEM-7 Insulate Building Envelope

Electric Savings:	\$ 1		9 0.0	kWh per year kW demand
Fuel Savings:	\$14		1.9	MMBtu fuel per year Natural Gas
Total Annual Savings:	\$ 15			
Project Cost:	\$ 236			
Simple Payback:	15.9	years		

Introduction:

Heat moves from areas of high temperature to areas of low temperature. As the temperature difference between a heated and an unheated space becomes greater, so does the rate of heat transfer. Insulation reduces the rate of heat transfer by filling the space with material that is less conductive than what is currently there. The effectiveness of insulation is measured by R-value, which is the resistance to heat transfer. As the R-value increases, the rate at which heat is transferred decreases.

Insulation can be installed in enclosed spaces, such as wall cavities, cathedral ceiling cavities, and floored attic cavities. It can also be installed in unfloored attics, which can accommodate greater thickness resulting in higher R-value. When insulation is combined with air sealing, convective air currents that circulate air within cavities and through insulation are reduced, which increases the effective R-value of the insulation.

Recommendation:

The fire chief office gets frigid during the winter, likely due to the poorly insulated wall area where a window used to be. The R-value of this wall is likley much lower than the rest of the building. This calculation assumes R-value 10 for the wall-just below the standard 13, as it was noted during the site visit interview that there can be frost build up in the room. An insulation study may be useful to determine the true state of insulation throughout the Firehouse offices.

Add insulation equal to or greater than R-10 to 200 square feet of the fire chief office wall.

EEM-8 Install Double Glazing

Electric Savings:	\$ O		0 0.0	kWh per year kW demand
Fuel Savings:	\$ 20		2.6	MMBtu fuel per year Natural Gas
Total Annual Savings: Project Cost: Simple Payback:	\$ 20 \$ 998 50.7	years		

Introduction:

Single pane wooden or metal frame windows can be very inefficient. Heat loss due to conduction through single pane windows can be very high. New windows utilize two panes of glass instead of one. Glass performance is measured in two ways Solar Heat Gain Co-efficient (SHGC) or Visible Transmittance (VT). SHGC is the amount of solar gain transmitted through a window into the building. VT refers to the amount of visible light that moves through the glass from exterior to interior. These two factors can be altered for a higher performing window by adding Low-E coatings and spacers with gas. The overall thermal performance of windows is generally assigned a u-value. This measurement considers all parts of a window. These parts include the frame, sash, and glass. The installation of windows with double glazing will reduce infiltration and conduction losses.

Recommendation:

The kitchen window in the Firehouse is poorly inulated and contributes to significant heat loss in the building. Additionally, the window lets in water which has overtime caused water damage to the surrounding wall and windowsill. Install a new double glazed window with low-e coatings. Be sure that window is fully caulked on the exterior and interior where they meet the existing building structure. The EPA and DOE have developed stringent standards for windows. Windows that meet these standards can earn the Energy Star Label. Replacement window should bear the Energy Star label.

Despite its long payback period, this measure is still recommended for implementation. The building owner reported that this area of the Firehouse is particularly cold due to the window, and does not retain heat. Additionally, the water damage allowed by the window will grow over time, and result in more devastating damage.

EEM-9 Install A Tankless Water Heater

Electric Savings:	(\$ 11)	(77) (0.0)	kWh per year kW demand
Fuel Savings:	\$ 36	4.7	MMBtu fuel per year Natural Gas
Total Annual Savings:	\$ 25		
Project Cost:	\$ 3,176		
Simple Payback:	124.8	years	

Introduction:

Storage type water heaters maintain a tank of hot water continuously, so that hot water is available when it is needed. These storage tanks continuously lose heat through the outer surfaces of the tank, even though they are insulated. Water heaters with gas, oil or propane burners also lose heat through the flue when the burner is not firing.

Tankless water heaters produce hot water only when there is a demand for it. They sense the flow of water and quickly heat the water as long as there is flow, or demand, for hot water. Tankless water heaters are available with electricity, natural gas or propane as energy sources. They are best located close to the point where hot water is used.

Recommendation:

Replace the present storage type water heater serving the Village Hall with an electric tankless water heater.

This measure is not recommended as the payback period extends beyond its effective useful life.

EEM-10 Switch Fuels For Heating Water

Electric Savings:	(\$ 11)	(77) (0.0)	kWh per year kW demand
Fuel Savings:	\$ 20	2.6	MMBtu fuel per year Natural Gas
Total Annual Savings:	\$ 9		
Project Cost:	\$ 3,176		
Simple Payback:	361.2	years	

Introduction:

The cost of heating water may be reduced by switching to a fuel that offers a lower cost and/or higher efficiency equipment. A fuel switch is also one way to increase system capacity if the current system cannot meet your demand for hot water. High efficiency condensing water heaters using natural gas or propane are available in tankless and storage-type configurations. Electric heat pump water heaters are another high efficiency option. Small electric waters located at the point of use may also be more energy efficient than distant oversized storage type systems.

The new systems will usually require the installation of power and natural gas or propane piping. Fossil fuel systems must be vented to the outdoors and condensing systems must be piped to a suitable drain to remove condensate. Fossil fuel fired systems must be located in a space with access to the outdoors. All state and local regulations must be adhered to for the safe and proper installation of these units.

Recommendation:

Replace the present natural gas tankless water heater serving the Firehouse with an electric tankless water heater.

This measure is not recommended as its payback period extends beyond its effective useful life.

Building Electrification Measures

The following measures evaluate the impact of replacing your existing fossil-fuel heating systems with clean heating and cooling systems powered by electricity. For space heating, air source heat pumps and ground source heat pumps are available in various system types to provide both heating and cooling to your building.

Fossil fuel-fired water heaters may also be replaced with heat pump water heaters to further reduce your use of fossil fuels.

When combined with renewable electricity, heat pump systems can eliminate the use of fossil fuels in your building.

See Appendix E - Benefits Of Clean Heating and Cooling (CHC) Technologies for more information on these system types.

BE-1 Install Clean Heating System - Air Source Heat Pump

Electric Savings:	(\$ 1,246)	(10,261) (1.7)	kWh per year kW demand
Fuel Savings:	\$ 679	88.1	MMBtu fuel per year Natural Gas
Total Annual Savings: Project Cost: Simple Payback:	(\$ 568) \$ 13,192 n/a	years, n/a	years after incentives

Introduction:

Air source heat pumps (ASHP) provide both heating and cooling using electricity to exchange energy with the outdoor air. Existing buildings may be retrofitted with various heat pump technologies to reduce or eliminate their dependence on fossil fuels for space heating. System options range from centrally-ducted cold climate air source heat pumps and mini-split heat pumps to large variable refrigerant flow systems having multiple indoor units supported by each outdoor unit.

At very cold outdoor air conditions, air source heat pumps may require supplemental heat to meet your building's heating load. Supplemental heat may be in the form of electric resistance heat or your existing fossil-fueled heating system, if it remains in service. The extent to which an ASHP system reduces your fossil fuel use will depend on the exact design and control of your new system.

Recommendation:

Replace your natural gas heating system with a central ducted air source heat pump system serving the Firehouse garage. The system type is: Central Ducted ASHP with Integrated/ Modulating controls sized to 16% of the building heating load. The heat pumps are assumed to be rated at 13.05 EER full load cooling, 15 SEER. The heat pumps are assumed to be rated at 10 HSPF for heating, which may be adjusted to 2.59 COP. Be sure to specify heat pumps that meet NEEP requirements (Northeast Energy Efficiency Partnerships). See https://ashp.neep.org/#!/product_list/ for current models that meet these requirements.

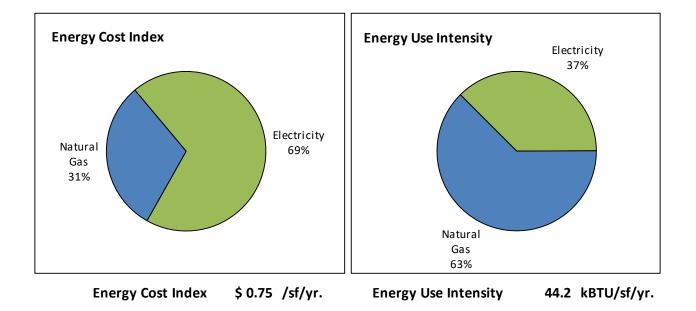
This measure is not recommended as the payback period extends beyond its effective useful life.

Appendix A

Equipment Inventory

	Heating and Air Conditioning Equipment													
Unit Type	Qty	Qty Make/Model		Heating Eff. Cooling Capacity		Units EER		Serves/Location	Year					
Furnace	Furnace 1 York		120	96%				Firehouse	2016					
Unit Heater	1	Trane	200	80%				Fire Truck Bay	1995					
Furnace	Furnace 1 ICP		120	98%				Police Chief	2011					
Furnace	1	Luxaire	80	95%				Court Room	2017					
Furnace	Furnace 1 l		100	80%				Police Dept.	2002					
Air Conditioner	Air Conditioner 3 Luxaire				3	tons	11.0	Both Buildings						
Boiler	1	Weil McLain	200	84%				Village Hall	2016					

Domestic Hot Water										
Unit Type	Qty Make/Model		Capacity	Units	Fuel Type	Storage Capacity (gal.)		Serves/Location	Year	
Tankless	1	Navien	200	kbtuh	Natural Gas	0	96%	Firehouse	2021	
Storage	Storage 1		Reliance 35.0		Natural Gas	40	80%	Town Hall	2008	


				Interio	or Lightin	g Fixtures					
	Existing Fixtures					Recommended	Recommended I	nterior L	ighting Efficiency Improveme	ents	
Line #	Area	Qty	Present Lighting Type	esent Lighting Type Lamps Watts /fixt /Fixt		Control Type	Measure Type	Qty	Proposed Lighting Type	Lamp s /fixt	Watts /Fixt
1	Fire Offices	2	4' 32w T8 EE Mag. bal.	2	71	No Change	LED Relamp	2	4' LED T8 2000 lu. 14W	2	28
2	Fire Hall Hallways	8	4' 32w T8 EE Mag. bal.	2	71	No Change	LED Relamp	8	4' LED T8 2000 lu. 14W	2	28
3	Fire Mop Closet	1	2' 17w T8 Elec. bal.	3	47	No Change	LED Relamp	1	2' LED tube 1150 lu. 7W	3	21
4	Fire Store Closet	1	4' 32w T8 EE Mag. bal.	3	110	No Change	LED Relamp	1	4' LED T8 2000 lu. 14W	3	42
5	Fire Training Room	8	4' 32w T8 EE Mag. bal.	2	71	No Change	LED Relamp	8	4' LED T8 2000 lu. 14W	2	28
6	Fire Kitchen (Pucks) 4 11w CFL Spiral Elec. bal.		1	11	No Change	LED Relamp	4	4' LED T8 2000 lu. 14W	1	14	
7	Fire Kitchen	2	4' 32w T8 EE Mag. bal.	2	71	No Change	LED Relamp LED Relamp	2	A19 LED, 9W	2	18
8	Fire Kitchen (Above Sink)	1	4' 30w T8 Elec. bal.	1	28	No Change		1	4' LED T8 2000 lu. 14W	1	14
9	Fire Break Room	5	4' 32w T8 EE Mag. bal.	2	71	No Change	LED Relamp	5	4' LED T8 2000 lu. 14W	2	28
10	Fire Back Stairwell	1	4' 40w T12 EE Mag. bal.	2	86	No Change	LED Relamp	1	8' LED T12/8 IS, 33W	2	66
11	Court Room	12	4' 32w T8 EE Mag. bal.	2	71	No Change	LED Relamp	12	4' LED T8 2000 lu. 14W	2	28
12	Gym	15	4' 32w T8 EE Mag. bal.	2	71	No Change	LED Relamp	15	4' LED T8 2000 lu. 14W	2	28
13	Code Enforcement Lobby	6	4' 32w T8 EE Mag. bal.	2	71	No Change	LED Relamp	6	4' LED T8 2000 lu. 14W	2	28
14	Code Enforcement Office	25	4' 32w T8 EE Mag. bal.	2	71	No Change	LED Relamp	25	4' LED T8 2000 lu. 14W	2	28
15	Police Offices	15	2' 17w T8 Elec. bal.	3	47	No Change	LED Relamp	15	2' LED tube 1150 lu. 7W	3	21
16	Police Offices	15	4' 32w T8 EE Mag. bal.	2	71	No Change	LED Relamp	15	4' LED T8 2000 lu. 14W	2	28

	Exterior Lighting Fixtures													
Existing Fixtures						Recommended	Lighting Efficiency Improvements							
Line #	Area	Oty Present Lighting Type		Watts /Fixt	Control Type	Measure Type	Qty	Proposed Lighting Type	Lamp s /fixt	Watts /Fixt				
1	South Face	1	LED wallpack, 50W	1	80	Photocell	No change	1	LED wallpack, 50W	1	80			
2	West Face	1	LED wallpack, 50W	1	80	Photocell	No change	1	LED wallpack, 50W	1	80			

Appendix B

Energy Use and Cost Summary

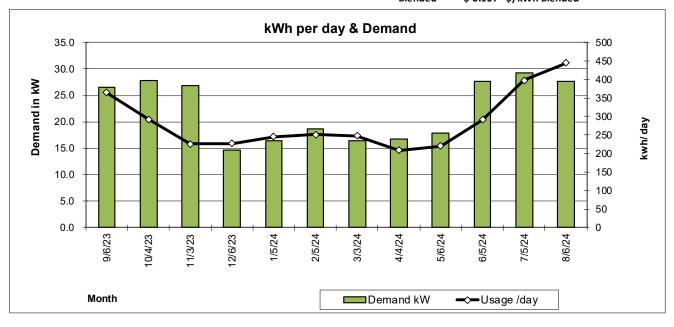
Energ	У	Units Used		BTU/unit	mmBTU	% of total	kBtu/sq.ft./year
	Electricity	103,906	kwh	3,412	355	37%	16.6
	Natural Gas	5,926	therm	100,000	593	63%	27.7
	Total				947		44.2
Cost		Energy Cost	Unit Costs		% of total	\$/sq.ft./year	
	Electricity	\$ 11,154	\$ 0.063	kwh	69%	\$ 0.52	
_	Natural Gas	\$ 4,947	\$ 0.770	therm	31%	\$ 0.23	_
	Total	\$ 16,102				\$ 0.75	

Utility Bill Data

The following pages present the energy use and cost data for your facility and establish the value of each type of energy. Electricity is measured and billed in units of kilowatt-hours (kWh) that represent the total amount of electricity used in the billing period. Electricity may also be billed based on the highest rate of use, or peak demand, that occurred during the billing period. Electric demand is billed in units of kilowatts (kW).

Other fuels may be billed in volume units (gallons, hundred cubic feet or ccf, etc.) or based on their heat content (therms, equal to 100,000 British Thermal Units). All energy types may be converted into a common unit, such as BTUs, to facilitate analysis and comparison with other facilities. One million BTUs is abbreviated as mmBtu in this report.

ELECTRICITY CONSUMPTION AND COST ANALYSIS


Village of Medina

Gross Area:	21,411	s.f.
	16,558	Btu/s.f./Yr
	\$ 0.52	/s.f.
	1.4	watts/s.f.

Utility: National Grid Account # ends w/ 0105 Rate: SC SC2D Meter Charge: \$53.57 / month Demand Charge: \$14.82 / kW Supplier: National Grid

		Usage		Electricity Charges		Total					
Month		Energy	Demand	Utility	Supply	Electricity		Demand	Energy	Load	Usage
Ending	Days	kWh	kW	Cost	Costs	Cost		Cost	\$/kWh	Factor	/day
9/6/23	30	10,954	26.5	\$ 483	\$ 693	\$ 1,176		\$ 393	\$ 0.067	0.57	365
10/4/23	28	8,192	27.8	\$ 514	\$ 432	\$ 946		\$ 412	\$ 0.059	0.44	293
11/3/23	30	6,776	26.9	\$ 499	\$ 351	\$ 850		\$ 399	\$ 0.059	0.35	226
12/6/23	33	7,503	14.7	\$ 314	\$ 396	\$ 709		\$ 218	\$ 0.058	0.64	227
1/5/24	30	7,360	16.5	\$ 328	\$ 328	\$ 656		\$ 244	\$ 0.049	0.62	245
2/5/24	31	7,803	18.6	\$ 377	\$ 639	\$ 1,016		\$ 276	\$ 0.088	0.56	252
3/3/24	27	6,701	16.4	\$ 342	\$ 426	\$ 768		\$ 243	\$ 0.070	0.63	248
4/4/24	32	6,670	16.7	\$ 357	\$ 265	\$ 622		\$ 247	\$ 0.048	0.52	208
5/6/24	32	7,041	17.8	\$ 357	\$ 273	\$ 630		\$ 264	\$ 0.044	0.52	220
6/5/24	30	8,748	27.6	\$ 471	\$ 422	\$ 893		\$ 409	\$ 0.049	0.44	292
7/5/24	30	11,932	29.2	\$ 498	\$ 796	\$ 1,294		\$ 433	\$ 0.068	0.57	398
8/6/24	32	14,226	27.7	\$ 509	\$ 1,084	\$ 1,594		\$ 410	\$ 0.079	0.67	445
	365	103,906	266.4	\$ 5,048	\$ 6,106	\$ 11,154		\$ 3,948	\$ 0.063	0.54	285

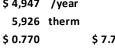
Annual Energy:103,906kWh / year\$ 11,154/ yearUnit CostsPeak Demand:29kW PeakDemand\$ 14.82\$ / kWAverage Demand:22kWEnergy\$ 0.063\$ / kWh IncrementalBlended\$ 0.107\$ / kWh Blended

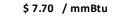
NATURAL GAS CONSUMPTION AND COST ANALYSIS

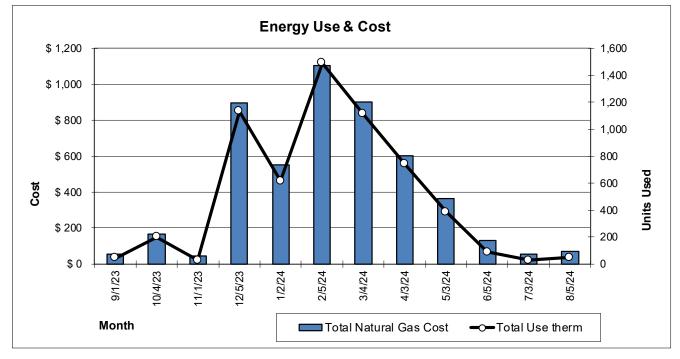
Village of Medina

21,411	s.f.
27,676	Btu/s.f./Y
\$ 0.23	/s.f.

Natural Gas


Use & Cost Summary:


Utility:	NYSEG	
Account # :	ends w/ -599,	
Rate:	SC SC02	
Billing unit:	therm	
BTU/Unit:	100,000	
Meter Charge:	\$ 32.00	/ month


Supplier: NYSEG

Month	#	Utility C	harges	Supplier	Charges	Total Use	Total Natural	Average
Ending	Days	therm	Cost	therm	Cost	therm	Gas Cost	\$/therm
9/1/23	30	44	\$ 44	44	\$ 12	44	\$ 56	\$ 0.54
10/4/23	33	202	\$ 113	202	\$ 54	202	\$ 167	\$ 0.67
11/1/23	28	27	\$ 36	27	\$ 8	27	\$ 44	\$ 0.45
12/5/23	34	1,135	\$ 432	1,135	\$ 465	1,135	\$ 897	\$ 0.76
1/2/24	28	617	\$ 318	617	\$ 236	617	\$ 553	\$ 0.85
2/5/24	34	1,492	\$ 563	1,492	\$ 541	1,492	\$ 1,103	\$ 0.72
3/4/24	28	1,114	\$ 514	1,114	\$ 387	1,114	\$ 901	\$ 0.78
4/3/24	30	744	\$ 354	744	\$ 250	744	\$ 604	\$ 0.77
5/3/24	30	388	\$ 248	388	\$ 118	388	\$ 366	\$ 0.86
6/5/24	33	88	\$ 104	88	\$ 27	88	\$ 131	\$ 1.13
7/3/24	28	28	\$ 45	28	\$ 10	28	\$ 54	\$ 0.80
8/5/24	33	50	\$ 55	50	\$ 17	50	\$ 72	\$ 0.81
	369	5,926	\$ 2 <i>,</i> 824	5,926	\$ 2,123	5,926	\$ 4,947	\$ 0.77
		А	nnual Natura	l Gas Cost		\$ 4,947	/year	
		А	5,926	therm				

Appendix C

EEM Calculations

Interactions

The Energy Efficiency Measure calculations in this section are stand-alone measures that are not interacted with the other calculations. Each measure shows the energy savings that may be expected if it is the only measure to be implemented. If multiple measures will be implemented, energy savings will likely be lower than the calculations represent.

As an example, replacing an 80% efficient boiler with a 92% efficient boiler will reduce the amount of fuel required to heat the building. If the walls and roof are insulated such that the required heating energy is reduced by 30%, the new boiler will serve a smaller heating load, and the energy savings gained from the boiler replacement will be reduced by 30%.

CALCULATIONS FOR INTERIOR LIGHTING RETROFIT Village of Medina

EEM-1

Type:	Units:	Unit cost:	BTU/unit		HVAC Adjust	ment Factor	rs
Natural Gas	therm	\$ 0.770	100,000		Cooling	Demand	Fuel
Electricity	kwh	\$ 0.063	3,412		HVACc	HVACd	HVACg
Demand	kW	\$ 14.82	12	Months of demand savings/year	9.00%	20.00%	-2.00%
80%	of building	is air conditio	oned				

	Existing Interior Lighting Systems								Recommended Interior Lighting Efficiency Improvements											
1: #	Area	Qty	Present Lighting Type	Lamps /fixt	Watts /Fixt	Control Type	% Reduction	Present Hrs./yr.	Proposed Hrs./yr.	# Controls required	Measure Type	Qty	Proposed Lighting Type	Lamps /fixt	Reflect or ?	Watts /Fixt	Project Cost	Annual Savings	kWh/yr. Savings	Payback (Years)
Line #	Fire Offices	2	4' 32w T8 EE Mag. bal.	711AC	, .	No Change	0%	2,500	2,500	0	LED Relamp	2	4' LED T8 2000 lu. 14W	2	01 1	28	\$ 53	\$ 29	215	1.8
2	Fire Hall Hallways	-	4' 32w 18 EE Mag. bal.	2		0	0%	2,500		0		2		2		28	\$ 211	\$ 115	860	
	,	-	0	2		No Change			2,500	ů	LED Relamp	8	4' LED T8 2000 lu. 14W	2						1.8
	Fire Mop Closet	_	2' 17w T8 Elec. bal.	3		No Change	0%	2,500	2,500	0	LED Relamp	1	2' LED tube 1150 lu. 7W	3		21	\$ 43	\$9	65	5.0
4	Fire Store Closet		4' 32w T8 EE Mag. bal.	3	110	No Change	0%	2,500	2,500	0	LED Relamp	1	4' LED T8 2000 lu. 14W	3		42	\$ 40	\$ 23	170	1.7
5	Fire Training Room	8	4' 32w T8 EE Mag. bal.	2	71	No Change	0%	2,500	2,500	0	LED Relamp	8	4' LED T8 2000 lu. 14W	2		28	\$ 211	\$ 115	860	1.8
6	Fire Kitchen (Pucks)	4	11w CFL Spiral Elec. bal	1	11	No Change	0%	2,500	2,500	0	LED Relamp	4	4' LED T8 2000 lu. 14W	1		14	\$ 53	(\$ 4)	(30)	(13.1)
7	Fire Kitchen	2	4' 32w T8 EE Mag. bal.	2	71	No Change	0%	2,500	2,500	0	LED Relamp	2	A19 LED, 9W	2		18	\$ 14	\$ 36	265	0.4
8	Fire Kitchen (Above Sink)	1	4' 30w T8 Elec. bal.	1	28	No Change	0%	2,500	2,500	0	LED Relamp	1	4' LED T8 2000 lu. 14W	1		14	\$ 13	\$5	35	2.8
9	Fire Break Room	5	4' 32w T8 EE Mag. bal.	2	71	No Change	0%	2,500	2,500	0	LED Relamp	5	4' LED T8 2000 lu. 14W	2		28	\$ 132	\$ 72	538	1.8
10	Fire Back Stairwell	1	4' 40w T12 EE Mag. bal.	2	86	No Change	0%	2,500	2,500	0	LED Relamp	1	8' LED T12/8 IS, 33W	2		66	\$ 60	\$7	50	8.9
11	Court Room	12	4' 32w T8 EE Mag. bal.	2	71	No Change	0%	2,500	2,500	0	LED Relamp	12	4' LED T8 2000 lu. 14W	2		28	\$ 317	\$ 173	1,290	1.8
12	Gym	15	4' 32w T8 EE Mag. bal.	2	71	No Change	0%	2,500	2,500	0	LED Relamp	15	4' LED T8 2000 lu. 14W	2		28	\$ 396	\$ 216	1,613	1.8
13	Code Enforcement Lobby	6	4' 32w T8 EE Mag. bal.	2	71	No Change	0%	2,500	2,500	0	LED Relamp	6	4' LED T8 2000 lu. 14W	2		28	\$ 158	\$ 87	645	1.8
14	Code Enforcement Offices	25	4' 32w T8 EE Mag. bal.	2	71	No Change	0%	2,500	2,500	0	LED Relamp	25	4' LED T8 2000 lu. 14W	2		28	\$ 660	\$ 360	2,688	1.8
15	Police Offices	15	2' 17w T8 Elec. bal.	3	47	No Change	0%	2,500	2,500	0	LED Relamp	15	2' LED tube 1150 lu. 7W	3		21	\$ 648	\$ 131	975	5.0
16	Police Offices	15	4' 32w T8 EE Mag. bal.	2	71	No Change	0%	2,500	2,500	0	LED Relamp	15	4' LED T8 2000 lu. 14W	2		28	\$ 396	\$ 216	1,613	1.8
		121		8.0	kW exist	ing				0		121		3.2	kW pro	posed				

Note: bal. = ballast, EE = energy efficient, STD = standard efficiency, mag. = magnetic, Elec. = electronic, CFL = compact fluorescent lamp

	SUMMARY OF SAVINGS BY MEASURE TYPE:			Energy S	avings	Demand				
	Measure Type		Qty.	Controls kwh/year	Efficiency kwh/year	kW Savings	Project Cost	Electric Savings	Payback (Years)	Measure Description
С	EEM-1C	LED Relamp	121		11,850	4.7	\$ 3,406	\$ 1,589	2.1	Screw-in or Socket based LED lamps
-			121	0	11,850	4.7	\$ 3,406	\$ 1,589		
		Gross Energy Savings		11,850	kwh					
	Net Energy Savings			12,703 kwh		5.5	-254 therm		\$ 1,582	net
	PAYBACK PERIOD:									

\$ 3,406 = 2.2 year payback Estimated Cost Interior Lighting: Annual Energy Savings (kWh + kW): \$ 1,582

CALCULATIONS TO IMPLEMENT DEEPER SETBACK

EEM-2 Village of Medina

INPUT DATA:		45%	of Building to be	e Setback		
			Current	Proposed		
Heating T Setp	oint:	Occupied	66	66	deg. F.	
		Unoccupied	65	60	deg. F.	
Cooling T Setpo	oint:	Occupied	71	71	deg. F.	
0 1		Unoccupied	75	80	deg. F.	
HVAC Schedule	c	Occupied	126.0	126.0	Hours per week	
	-	Unoccupied	42.0	42.0	Hours per week	
Q internal gain	ç.	Occupied	26,146	26,146	Btuh	
Q Internal Ban		Unoccupied	10,072	10,072	Btuh	
Q internal gain	c.	Schedule	50	50	Hours per week	
BLC:	5.	Occupied	2,035	2,035	Btuh/deg. F.	
	C)	Unoccupied	1,214	1,214	-	
(excludes DOA	5)			· · ·	Btuh/deg. F.	
		Fuel Data	Heating	Cooling	Г	
		Type:	Natural Gas	Electricity	Economizer?	
		Units: Unit cost:	therm	kwh \$ 0.063	No	
		BTU/unit	\$ 0.770 100,000	\$ 0.063 3,412		
	- (1	-		-		45.5
		iciency/COP:	84.2%		Avg. COP. EER:	
CALCULATION	S:			80.0%	of bldg. is cooled	1
Current		Rochester, 12	6 hrs./week		1	
	Occupied	Unoccupied	Occ Net Heat	Unocc Net Heat	Heating Fuel	Cooling
Bin Mid Pt.	Hours	Hours	Loss BTUH	Loss BTUH	Use therm	Energy kwh
(7 5)	3	0			5	
(7.5) (2.5)	3	7	133,465 123,291	77,755 71,684	10	0
2.5	21	13	113,117	65,613	38	0
7.5	76	32	102,943	59,542	116	0
12.5	150	73	92,769	53,471	212	0
17.5	293	89	82,595	47,401	338	0
22.5	306	115	72,421	41,330	320	0
27.5	315	141	62,247	35,259	292	0
32.5	481	176	52,074	29,188	359	0
37.5	721	250	41,900	23,117	428	0
42.5	500	177	31,726	17,047	224	0
47.5	372	177	21,552	10,976	118	0
52.5	320	115	11,378	4,905	50	0
57.5	491	244	1,204	0	7	0
62.5	655	295	0	0	0	0
67.5	621	199	(9,815)	(915)	0	323
72.5	411	64	(19,989)	(6,986)	0	446
77.5	480	19	(30,163)	(13,057)	0	758
82.5	285	4	(40,337)	(19,127)	0	596
87.5	57	0	(50,511)	(25,198)	0	148
92.5	9	0	(60,685)	(31,269)	0	28
97.5	0	0	(70,859)	(37,340)	0	0
102.5	0	0	(81,033)	(43,411)	0	0
107.5	0	0	(91,207)	(49,481)	0	0
	8,760	hours			2,517	2,299

Bin Mid Pt. Hours Loss BTUH Loss BTUH Use therm Energy k (7.5) 3 0 133,465 71,884 5 (2.5) 3 7 123,291 65,813 10 2.5 21 13 113,117 59,742 37 7.5 76 32 102,943 53,671 113 12.5 150 73 92,769 47,601 207 17.5 293 89 82,595 41,530 332 22.5 306 115 72,421 35,459 312 27.5 315 141 62,247 29,388 282 32.5 481 176 52,074 23,317 346 37.5 721 250 41,900 17,247 410 42.5 500 177 31,726 11,176 212 47.5 372 177 21,552 5,105 106 52.5 320	Proposed		Rochester, 12	6 hrs./week			_
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Rip Mid Dt	Occupied	Unoccupied	Occ Net Heat	Unocc Net Heat	Heating Fuel	Cooling
(2.5) 3 7 123,291 65,813 10 2.5 2.1 13 113,117 59,742 37 7.5 76 32 102,943 53,671 113 12.5 150 73 92,769 47,601 207 17.5 293 89 82,595 41,530 332 22.5 306 115 72,421 35,459 312 27.5 315 141 62,247 29,388 282 32.5 481 176 52,074 23,317 346 37.5 721 250 41,900 17,247 440 42.5 500 177 31,726 11,176 212 47.5 372 177 21,552 5,105 106 52.5 320 115 11,378 0 43 57.5 491 244 1,204 0 7 62.5 655 295 0 0 0 0 77.5 480 19 (30,163)	BIN IVIIA PL.	Hours	Hours	Loss BTUH	Loss BTUH	Use therm	Energy kwh
2.5 21 13 113,117 59,742 37 7.5 76 32 102,943 53,671 113 12.5 150 73 92,769 47,601 207 17.5 293 89 82,595 41,530 332 22.5 306 115 72,421 35,459 312 27.5 315 141 62,247 29,388 282 32.5 481 176 52,074 23,317 346 37.5 721 250 41,900 17,247 410 42.5 500 177 31,726 11,176 212 47.5 372 177 21,525 5,105 106 52.5 320 115 11,378 0 43 57.5 491 244 1,204 0 7 62.5 655 295 0 0 0 2 77.5 480 19 (30,163) (7,037) 0 0 72.5 411 64 <	(7.5)	3	0	133,465	71,884	5	0
7.5 76 32 102,943 53,671 113 12.5 150 73 92,769 47,601 207 17.5 293 89 82,595 41,530 332 22.5 306 115 72,421 35,459 312 27.5 315 141 62,247 29,388 282 32.5 481 176 52,074 23,317 346 37.5 721 250 41,900 17,247 410 42.5 500 177 31,726 11,176 212 47.5 372 177 21,552 5,105 106 52.5 320 115 11,378 0 43 57.5 491 244 1,204 0 7 62.5 655 295 0 0 0 1 77.5 480 19 (30,163) (7,037) 0 1 92.5 9 <t< td=""><td>(2.5)</td><td>3</td><td>7</td><td>123,291</td><td>65,813</td><td>10</td><td>0</td></t<>	(2.5)	3	7	123,291	65,813	10	0
12.5 150 73 92,769 47,601 207 17.5 233 89 82,595 41,530 332 22.5 306 115 72,421 35,459 312 27.5 315 141 62,247 29,388 282 32.5 481 176 52,074 23,317 346 37.5 721 250 41,900 17,247 410 42.5 500 177 31,726 11,176 212 47.5 372 177 21,552 5,105 106 52.5 320 115 11,378 0 43 57.5 491 244 1,204 0 7 62.5 655 295 0 0 0 1 72.5 411 64 (19,989) (966) 0 1 77.5 480 19 (30,163) (7,037) 0 1 82.5 285 4 (40,371) (13,107) 0 1 92.5 <	2.5	21	13	113,117	59,742	37	0
17.5 293 89 82,595 41,530 332 22.5 306 115 72,421 35,459 312 27.5 315 141 62,247 29,388 282 32.5 483 176 52,074 23,317 346 37.5 721 250 41,900 17,247 410 44.5 500 177 31,726 11,176 212 47.5 372 177 21,525 5,105 106 52.5 320 115 11,378 0 43 57.5 491 244 1,204 0 7 62.5 655 295 0 0 0 77.5 480 19 (9,815) 0 0 77.5 480 19 (30,163) (7,037) 0 82.5 285 4 (40,337) (13,107) 0 87.5 57 0 (50,5111) (19,178) 0 92.5 9 0 (60,685) (25,249) <td>7.5</td> <td>76</td> <td>32</td> <td>102,943</td> <td>53,671</td> <td>113</td> <td>0</td>	7.5	76	32	102,943	53,671	113	0
22.5 306 115 $72,421$ $35,459$ 312 27.5 315 141 $62,247$ $29,388$ 282 32.5 481 176 $52,074$ $23,317$ 346 37.5 721 250 $41,900$ $17,247$ 410 42.5 500 177 $31,726$ $11,176$ 212 47.5 372 177 $21,552$ $5,105$ 106 52.5 320 115 $11,378$ 0 43 57.5 491 244 $1,204$ 0 7 62.5 655 295 0 0 0 67.5 621 199 (9,815) 0 0 77.5 480 19 (30,163) (7,037) 0 77.5 480 19 (30,163) (7,037) 0 82.5 285 4 (40,337) (13,107) 0 97.5 0 0 (50,511) (19,178) 0 97.5 0 0	12.5	150	73	92,769	47,601	207	0
27.5 315 141 $62,247$ $29,388$ 282 32.5 481 176 $52,074$ $23,317$ 346 37.5 721 250 $41,900$ $17,247$ 410 42.5 500 177 $31,726$ $11,176$ 212 47.5 372 177 $21,552$ $5,105$ 106 52.5 320 115 $11,378$ 0 43 57.5 491 244 $1,204$ 0 7 62.5 655 295 0 0 0 0 67.5 621 199 (9,815) 0 0 0 77.5 480 19 (30,163) (7,037) 0 0 82.5 285 4 (40,337) (13,107) 0 0 0 97.5 0 0 (50,511) (19,178) 0 0 0 97.5 0 0 (81,033) (37,391) 0 0 0 0 102.5 0 <td>17.5</td> <td>293</td> <td>89</td> <td>82,595</td> <td>41,530</td> <td>332</td> <td>0</td>	17.5	293	89	82,595	41,530	332	0
32.5 481 176 52,074 23,317 346 37.5 721 250 41,900 17,247 410 42.5 500 177 31,726 11,176 212 47.5 372 177 21,552 5,105 106 52.5 320 115 11,378 0 43 57.5 491 244 1,204 0 7 62.5 655 295 0 0 0 67.5 621 199 (9,815) 0 0 77.5 480 19 (30,163) (7,037) 0 77.5 480 19 (30,163) (7,037) 0 87.5 57 0 (50,511) (13,107) 0 92.5 9 0 (60,685) (25,249) 0 97.5 0 0 (70,859) (31,320) 0 102.5 0 0 (81,033) (37,391) 0 107.5 0 0 (91,207) (43,461)	22.5	306	115		35,459	312	0
37.5 721 250 41,900 17,247 410 42.5 500 177 31,726 11,176 212 47.5 372 177 21,552 5,105 106 52.5 320 115 11,378 0 43 57.5 491 244 1,204 0 7 62.5 655 295 0 0 0 67.5 621 199 (9,815) 0 0 77.5 480 19 (30,163) (7,037) 0 77.5 480 19 (50,511) (19,178) 0 87.5 57 0 (50,511) (19,178) 0 92.5 9 0 (60,685) (25,249) 0 102.5 0 0 (81,033) (37,391) 0 107.5 0 0 (91,207) (43,461) 0 2,423 2,517 2,423 94 therm Cooling 2,299 2,263 36 kwh	27.5	315	141	62,247	29,388	282	0
42.5 500 177 31,726 11,176 212 47.5 372 177 21,552 5,105 106 52.5 320 115 11,378 0 43 57.5 491 244 1,204 0 7 62.5 655 295 0 0 0 67.5 621 199 (9,815) 0 0 0 72.5 411 64 (19,989) (966) 0 0 0 77.5 480 19 (30,163) (7,037) 0	32.5	481	176	52,074	23,317	346	0
47.5 372 177 21,552 5,105 106 52.5 320 115 11,378 0 43 57.5 491 244 1,204 0 7 62.5 655 295 0 0 0 67.5 621 199 (9,815) 0 0 72.5 411 64 (19,989) (966) 0 77.5 480 19 (30,163) (7,037) 0 82.5 285 4 (40,337) (13,107) 0 1 92.5 9 0 (60,685) (22,249) 0 0 97.5 0 0 (70,859) (31,320) 0 0 102.5 0 0 (81,033) (37,391) 0 0 107.5 0 0 (91,207) (43,461) 0 0 107.5 0 0 (91,207) 2,423 2,2 Annual Energy \$ \$ 75 \$ 75 \$ 75 \$ 75 IMPLEMENTA	37.5	721	250	41,900	17,247	410	0
52.5 320 115 11,378 0 43 57.5 491 244 1,204 0 7 62.5 655 295 0 0 0 67.5 621 199 (9,815) 0 0 72.5 411 64 (19,989) (966) 0 77.5 480 19 (30,163) (7,037) 0 82.5 285 4 (40,337) (13,107) 0 87.5 57 0 (50,511) (19,178) 0 92.5 9 0 (60,685) (25,249) 0 97.5 0 0 (70,859) (31,320) 0 102.5 0 0 (81,033) (37,391) 0 107.5 0 0 (81,033) (37,391) 0 107.5 0 0 (81,033) (37,391) 0 107.5 0 0 (81,033) (37,391) 0 107.5 0 0 (81,033) (37,391)	42.5	500	177	31,726	11,176	212	0
57.5 491 244 1,204 0 7 62.5 655 295 0 0 0 67.5 621 199 (9,815) 0 0 0 77.5 411 64 (19,989) (966) 0 0 77.5 480 19 (30,163) (7,037) 0 0 82.5 285 4 (40,337) (13,107) 0 0 87.5 57 0 (50,511) (19,178) 0 0 92.5 9 0 (60,685) (25,249) 0 0 97.5 0 0 (7,037) 0 0 0 0 102.5 0 0 (81,033) (37,391) 0 0 0 107.5 0 0 (91,207) (43,461) 0 0 0 8,760 hours 2,423 2,2 2,2 36 kwh Annual Energy \$ \$75 \$75 \$75 \$400 \$400 \$400 \$400 <td>47.5</td> <td>372</td> <td>177</td> <td>21,552</td> <td>5,105</td> <td>106</td> <td>0</td>	47.5	372	177	21,552	5,105	106	0
62.5 655 295 0 0 0 0 67.5 621 199 (9,815) 0 0 0 1 72.5 411 64 (19,989) (966) 0 1 1 77.5 480 19 (30,163) (7,037) 0 1 1 82.5 285 4 (40,337) (13,107) 0 1 0 1 1 1 0 1 1 0 1 1 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0	52.5	320	115	11,378	0	43	0
67.5 621 199 (9,815) 0 0 0 72.5 411 64 (19,989) (966) 0 0 77.5 480 19 (30,163) (7,037) 0 0 82.5 285 4 (40,337) (13,107) 0 0 87.5 57 0 (50,511) (19,178) 0 0 92.5 9 0 (60,685) (25,249) 0 0 97.5 0 0 (70,859) (31,320) 0 0 102.5 0 0 (81,033) (37,391) 0 0 107.5 0 0 (91,207) (43,461) 0 0 8,760 hours 2,423 2,2 2,2 9 2,663 36 kwh Annual Energy \$ \$75 \$75 \$75 \$75 \$75 \$75 IMPLEMENTATION COST & PAYBACK PERIOD: \$200 2 \$400	57.5	491	244	1,204	0	7	0
72.5 411 64 (19,989) (966) 0 77.5 480 19 (30,163) (7,037) 0 82.5 285 4 (40,337) (13,107) 0 87.5 57 0 (50,511) (19,178) 0 92.5 9 0 (60,685) (25,249) 0 97.5 0 0 (70,859) (31,320) 0 102.5 0 0 (81,033) (37,391) 0 107.5 0 0 (91,207) (43,461) 0 107.5 0 0 (91,207) (43,461) 0 107.5 0 0 (91,207) (43,461) 0 107.5 0 0 (91,207) (43,461) 0 107.5 0 0 (91,207) (43,461) 0 107.5 0 0 (91,207) (43,461) 0 107.5 0 0 (92,217) 2,423 2,7 Implementation Cost \$2,99 2,263	62.5	655	295	-	0	0	0
77.5 480 19 (30,163) (7,037) 0 82.5 285 4 (40,337) (13,107) 0 1 87.5 57 0 (50,511) (19,178) 0 1 92.5 9 0 (60,685) (25,249) 0 1 97.5 0 0 (70,859) (31,320) 0 1 102.5 0 0 (81,033) (37,391) 0 1 107.5 0 0 (91,207) (43,461) 0 1 8,760 hours 2,423 2,2 2,2 2,2 Present Proposed Savings Heating 2,517 2,423 94 therm Cooling 2,299 2,263 36 kwh Annual Energy \$ \$75 \$75 \$75 IMPLEMENTATION COST & PAYBACK PERIOD: Material Labor \$/unit Quantity Total Thermostat Reprogramming \$0 \$200 2 \$400 \$400	67.5	621	199			0	314
82.5 285 4 (40,337) (13,107) 0 87.5 57 0 (50,511) (19,178) 0 92.5 9 0 (60,685) (25,249) 0 97.5 0 0 (70,859) (31,320) 0 102.5 0 0 (81,033) (37,391) 0 107.5 0 0 (91,207) (43,461) 0 107.5 0 0 (91,207) (43,461) 0 8,760 hours 2,423 2,2 Present Proposed Savings Heating 2,517 2,423 94 therm Cooling 2,299 2,263 36 kwh Annual Energy \$ \$75 \$75 IMPLEMENTATION COST & PAYBACK PERIOD: \$400 Item \$/unit Labor \$/unit Quantity Total Thermostat Reprogramming \$0 \$200 2 \$400 \$400 Implementation Cost: \$400 = 5.4 ye			64				426
87.5 57 0 (50,511) (19,178) 0 92.5 9 0 (60,685) (25,249) 0 97.5 0 0 (70,859) (31,320) 0 102.5 0 0 (81,033) (37,391) 0 107.5 0 0 (91,207) (43,461) 0 107.5 0 0 (91,207) (43,461) 0 8,760 hours 2,423 2,2 Present Proposed Savings Heating 2,517 2,423 94 therm Cooling 2,299 2,263 36 kwh Annual Energy \$ \$75 \$75 \$75 IMPLEMENTATION COST & PAYBACK PERIOD: Material Item \$/unit Labor \$/unit Quantity Total Thermostat Reprogramming \$0 \$200 2 \$400 \$400	77.5	480	19			0	752
92.5 9 0 (60,685) (25,249) 0 97.5 0 0 (70,859) (31,320) 0 102.5 0 0 (81,033) (37,391) 0 107.5 0 0 (91,207) (43,461) 0 107.5 0 0 (91,207) (43,461) 0 8,760 hours 2,423 2,2 Present Proposed Savings Heating 2,517 2,423 94 therm Cooling 2,299 2,263 36 kwh Annual Energy \$ \$75 \$75 IMPLEMENTATION COST & PAYBACK PERIOD: \$400 \$400 Item \$/unit Labor \$/unit Quantity Total Thermostat Reprogramming \$0 \$200 2 \$400 \$ 400 \$ 400 \$ 400 \$ 400 \$ 400	82.5	285	4			0	594
97.5 0 0 (70,859) (31,320) 0 102.5 0 0 (81,033) (37,391) 0 107.5 0 0 (91,207) (43,461) 0 8,760 hours 2,423 2,7 8,760 hours 2,423 2,7 Present Proposed Savings Heating 2,517 2,423 94 Cooling 2,299 2,263 36 Annual Energy \$ \$75 \$75 IMPLEMENTATION COST & PAYBACK PERIOD: Material 1 Item \$/unit Labor \$/unit Quantity Total Thermostat Reprogramming \$0 \$200 2 \$400 \$ 400 \$400 \$400 \$400 \$400	87.5	57	0			0	148
102.5 0 0 (81,033) (37,391) 0 107.5 0 0 (91,207) (43,461) 0 8,760 hours 2,423 2,2 Present Proposed Savings Heating 2,517 2,423 94 Cooling 2,299 2,263 36 Annual Energy \$ \$75 \$75 IMPLEMENTATION COST & PAYBACK PERIOD: Material Item \$/unit Labor \$/unit Quantity Total Item \$/0 \$200 2 \$400 \$400 Implementation Cost: \$400 = 5.4 year payback		9	0				28
107.5 0 0 (91,207) (43,461) 0 8,760 hours 2,423 2,2 Present Proposed Savings Heating 2,517 2,423 94 Cooling 2,299 2,263 36 kwh Annual Energy \$ \$75 \$75 IMPLEMENTATION COST & PAYBACK PERIOD: Material Quantity Total Item \$/unit Labor \$/unit Quantity Total \$400 \$400 \$400 \$400 \$400		0	0				0
8,760 hours 2,423 2,2 Present Proposed Savings Heating 2,517 2,423 94 Cooling 2,299 2,263 36 kwh Annual Energy \$ \$75 IMPLEMENTATION COST & PAYBACK PERIOD:			0				0
Present Proposed Savings Heating 2,517 2,423 94 therm Cooling 2,299 2,263 36 kwh Annual Energy \$ \$75 IMPLEMENTATION COST & PAYBACK PERIOD: Material Item \$/unit Labor \$/unit Quantity Total Thermostat Reprogramming \$0 \$200 2 \$400 \$ 400 \$ 400 \$ 400 \$ 400 \$ 400	107.5	-	-	(91,207)	(43,461)	-	0
Heating2,5172,42394thermCooling2,2992,26336kwhAnnual Energy \$\$75\$75\$75IMPLEMENTATION COST & PAYBACK PERIOD:MaterialImplementation Cost: $1 abor $/unit$ QuantityTotalThermostat Reprogramming\$0\$2002\$400\$400\$400\$400\$400\$400		8,760	hours			2,423	2,263
Cooling2,2992,26336kwhAnnual Energy \$\$75IMPLEMENTATION COST & PAYBACK PERIOD:MaterialItem\$/unitLabor \$/unitQuantityTotalThermostat Reprogramming\$0\$2002\$400\$400Implementation Cost:\$400= 5.4 year payback				Present	Proposed	Savings	
Annual Energy \$\$75 IMPLEMENTATION COST & PAYBACK PERIOD: Material Item \$/unit Labor \$/unit Quantity Total Thermostat Reprogramming \$0 \$200 2 \$400 \$400 Implementation Cost: \$400 = 5.4 year payback			Heating	2,517	2,423	94	therm
IMPLEMENTATION COST & PAYBACK PERIOD: Material Item \$/unit Labor \$/unit Quantity Total Thermostat Reprogramming \$ 0 \$ 200 2 \$ 400 \$ 400 Implementation Cost: \$ 400 = 5.4 year payback			Cooling	2,299	2,263	36	kwh
Material Item \$/unit Labor \$/unit Quantity Total Thermostat Reprogramming \$ 0 \$ 200 2 \$ 400 \$ 400 Implementation Cost: \$ 400 = 5.4 year payback			Annual Energ	y \$		\$ 75	
Item \$/unit Labor \$/unit Quantity Total Thermostat Reprogramming \$ 0 \$ 200 2 \$ 400 Implementation Cost:	IMPLEMENTAT	ION COST & PA	YBACK PERIO	<u>D:</u>			
Thermostat Reprogramming \$ 0 \$ 200 2 \$ 400 \$ 400 \$ 400 \$ 400 \$ 400 Implementation Cost: \$ 400 = 5.4 year payback			Material				
Thermostat Reprogramming \$ 0 \$ 200 2 \$ 400 \$ 400 \$ 400 \$ 400 \$ 400 Implementation Cost: \$ 400 = 5.4 year payback	Item		\$/unit	Labor \$/unit	Quantity	Total	
Implementation Cost: \$400 = 5.4 year payback	Thermostat Re	programming	\$ O	\$ 200	2	\$ 400	
						\$ 400	
Annual Energy Savings: \$75	-	-				= 5.4 year pay	back
		Annual Energy S	Savings:		\$75		

CALCULATIONS TO INSULATE HEATING AND DOMESTIC HOT WATER PIPES EEM-3 Village of Medina

Input Data

Input Data	<u>1</u>						
	Fuel Information		Type:	Units:	Unit cost:	BTU/unit	Efficiency
	Hea	ating System	Natural Gas	therm	\$ 0.770	100,000	86%
	[DHW System	Natural Gas	therm	\$ 0.770	100,000	86%
			Type #1	Type #2	Type #3		
	Fluid		DHW	DHW	Hot Water		
	Pipe Material		Dull Copper	Dull Copper	Dull Copper		
	O.D., inches (d)		0.75	0.75	0.75		
	Total Length, ft		8	8	10		
	Fluid Temperature Inside Pipe, °F (Ts)		110	110	160		
	Ambient Temperature, °F (Ta)		65	65	65		
	Annual Operating Hours		8,760	8,760	1,413		
	New Insulation Thickness, inches		1.0	1.0	1.0		
	Thermal Conductivity - "k" (Btu-in,	/hr-sq ft-°F)	0.250	0.250	0.250		
Heat Loss	- Bare Pipe						
	C factor		1.016	1.016	1.016		
	emissivity based on pipe material		0.44	0.44	0.44		
	Outside Radius Pipe, inches (Ri	i)	0.38	0.38	0.38		
	h convection, Btu/hr - s.f. pipe surface		1.32	1.32	1.54		
	h radiation, Btu/hr - s.f. pipe surface ar	ea - °F	0.50	0.50	0.57		
	h total		1.81	1.81	2.11		
	Pipe area, sq ft/lin ft of pipe		0.196	0.196	0.196		
	Q bare, Btu/hr-lin ft		16	16	39		
Heat Loss	- Insulated Pipe						
	Outside Radius Insulation, inches (R	s)	1.38	1.38	1.38		
	Q i, Btu/hr-sq ft of outer area of insula	,	6.3	6.3	13.3		
	Insulation Area - sq ft/lin ft of pipe		0.7	0.7	0.7		
	Q insul, Btu/hr-lin ft		4.5	4.5	9.6		
	. , ,						
Avoided E	nergy Loss						
	Existing Loss - mmBtu/year		1.1	1.1	0.6		
	Proposed Loss - mmBtu/year		0.3	0.3	0.1		
	Avoided Loss - mmBtu/year		0.8	0.8	0.4		
Appual Eu	el Consumption						
Annuarru	erconsumption	existing	13	13	6		
		proposed	4	4	2		
	24	Units Saved	9	9	5		
	Natural Gas	Fuel Type	Natural Gas	Natural Gas			
	\$ 18	\$/year	\$ 7	\$ 7	\$4		
Formulae:							

Formulae:

Based on ASHRAE 1993 Fundamentals Handbook pages 20.9 and 22.17

h convection = C x {(1 / d) ^ 0.2} x { (1 / ((Ts + Ta)/2)) ^ 0.181 } x { (Ts - Ta) ^ 0.266 } h radiation = { emissivity x 0.1713 x 10 ^ -8 x [(Ta + 460) ^ 4 - (Ts +460) ^ 4]} / (Ta - Ts) Q bare = h total x Pipe Area x (Ts - Ta)

Q i = (Ts - Ta) / { [Rs x (In (Rs / Ri)] / k }

Q insul = Q i x Insul Area

Total Avoided Consumption = (Q bare - Q insul) x Total length of pipe x Annual Operating Hours

Payback Period:

Implementation Cost:	\$ 182	= 10 years payback
Annual Energy Savings:	\$ 18	

CALCULATIONS FOR BUILDING AIRFLOW REDUCTION

EEM-4 Village of Medina Village Hall

INPUT DATA:

				0	0	0
Proposed Reductions	Air chang	es/Hour		Pr	ation	
Air changes/hour	% reduction	Proposed	Period	Cu. ft./hr.	CFM	btuh/deg.
Weatherstripping	10%	0.27	Occupied	67,127	1,119	1,208
Weatherstripping	10%	0.27	Unoccupied	67,127	1,119	1,208
Total Infiltration & Reduction	Occupied	74,586	67,127	7,459	cfh savings	
Cu.Ft./hour	Unoccupied	74,586	67,127	7,459	cfh savings	

CALCULATIONS:

Leakage = 1/2 x Crack Length x Leakage Rate -**or**- ACH x Building Volume Energy Savings = (Present Leakage - New Leakage) x Accum Hours x Temp Difference x CF2 Energy Cost Savings = (Energy Savings / CF1) x (Unit cost / Efficiency)

	Occupied	Unoccupied			
T Setpoint:	66	65	°F		
Q internal gains:	58,495	22,534	Btuh		
BLC:	4,552	2,716	Btuh/°F		
T Balance:	53.3	56.5	°F. T Balance	= T Setpoint -	(Q internal gains / BLC)
Bin Data for Rochester, 126 hrs	s./week				
Accumulated Hours	3,561	1,365	below balance	e temp.	
Avg. OAT	34.1	33.9	°F below bala	nce temp.	
(T Set- Avg OAT)	32.0	31.0	°F difference		
Туре:	Natural Gas				
Units:	therm				
Unit cost:	\$ 0.770	/therm			
CF1	100,000	Btu/therm			
Efficiency:	84.2%				
CF2	0.018	Btu/hr-°F-cfh			
ſ	Ene	ergy Use - Btu/y	ear	Fuel Use	
F	Occupied	Unoccupied	Total	thorm / vr	

		1001030		
	Occupied	Unoccupied	Total	therm / yr
Baseline infiltration rate	153,211,900	56,719,200	209,931,100	2,495
Proposed infiltration rate	137,890,700	51,047,300	188,938,000	2,245
			Total Savings	249

IMPLEMENTATION COST & PAYBACK PERIOD:

ltem	Matl. & Labor (\$ / lin ft)	Quantity (lin ft)	Total			
Door Weatherstripping	\$ 3.00	74	\$ 222	-		
Garage Door Thresholds	\$ 5.00	50	\$ 250			
Window Caulking	\$ 2.00	862	\$ 1,724			
	Implementation	Cost:	\$ 2,196	= 11.4 year payback		
	Annual Energy Sa	vings:	\$ 192	-		

\$ 192

CALCULATIONS TO INSTALL INSULATED DOORS EEM-5 Village of Medina

INPUT DAT	Α:
-----------	----

Type & Qty.	Man	2
	Present	Proposed
Area:	42	sq ft total
Perimeter:	40	40
Infilt. rate:	60	30
R value:	1.0	5.0
U factor:	1.000	0.200
U x Area	42	8

	Present	Proposed	Change
Total UA	42	8	34 Btuh/deg F
Infiltration Load	22	11	11 Btuh/deg F
-	64	19	⁴⁴ Btuh/deg F

CALCULATIONS:

	Occupied	Unoccupied	Fuel Data	Heating	Cooling
Heating Setpoint:	66	65	Type:	Natural Gas	Electricity
Cooling Setpoint:	71	75	Units:	therm	kwh
Q internal gains (Btuh):	58,495	22,534	Unit cost:	\$ 0.770	\$ 0.063
BLC (Btuh/degree F):	4,552	2,716	BTU/unit	100,000	3,412
T Balance (°F.):	53.3	56.5	Efficiency/ COP:	84.2%	293.1%
T Balance = T Setpoint - (Q inte	ernal gains / BLC)		EER:		10.0

Bin Mid-Pt.	Occupied Hours	Unoccupied Hours	Change in Occupied Heat Loss	Change in Unoccupied Heat Loss	Heating Savings therm	Cooling Savings kwh
(7.5)	3	0	3,271	3,212	0	0
(2.5)	3	7	3,049	2,990	0	0
2.5	21	13	2,827	2,768	1	0
7.5	76	32	2,605	2,546	3	0
12.5	150	73	2,383	2,324	6	0
17.5	293	89	2,161	2,102	10	0
22.5	306	115	1,939	1,880	10	0
27.5	315	141	1,717	1,658	9	0
32.5	481	176	1,495	1,436	12	0
37.5	721	250	1,273	1,214	15	0
42.5	500	177	1,051	992	8	0
47.5	372	177	829	770	5	0
52.5	320	115	607	548	3	0
57.5	491	244	0	0	0	0
62.5	655	295	0	0	0	0
67.5	621	199	0	0	0	0
72.5	411	64	(77)	0	0	3
77.5	480	19	(299)	(109)	0	15
82.5	285	4	(521)	(331)	0	15
87.5	57	0	(743)	(553)	0	4
92.5	9	0	(965)	(775)	0	1
97.5	0	0	(1,187)	(997)	0	0
102.5	0	0	(1,409)	(1,219)	0	0
107.5	0	0	(1,631)	(1,441)	0	0
	8,760	hours		Energy Savings:	83 \$ 64	38 \$ 2

IMPLEMENTATION COST & PAYBACK PERIOD:

	Material & Labor				
Item	(\$ / each)	Quantity	Total		
Man	\$ 345	2	\$ 690		
Demolition	\$ 50	2	\$ 100		
Incolone contestio	. Calati	ć 700	12		

Implementation Cost:\$ 790= 12 year paybackAnnual Energy Savings:\$ 66

CALCULATIONS FOR EXTERIOR LIGHTING RETROFIT EEM-6 Village of Medina

Electricity

Unit cost: \$ 0.063 /kwh

kW demand \$14.82

Months of demand savings: 0 months/year

	Existing Exter	ior Lig	hting Systems	Recommended					Recommended Exterior												
						Lighting Controls				Lighting Efficiency Improvements											
Line #	Area	Qty	Present Lighting Type	Lamps	Watts	Control	%	Present	Proposed	# Controls	Measure Type	Qty	Proposed Lighting	Lamps	Reflect	Watts	Project	Annual	kWh/yr.	Payback	
LINE #	Area	QLY	Present Lighting Type	/fixt	/Fixt	Туре	Reduction	Hrs./yr.	Hrs./yr.	required	weasure type	re Type Qty	QLY	Туре	/fixt	or ?	/Fixt	Cost	Savings	Savings	(Years)
1	South Face	1	LED wallpack, 50W	1	80	Photocell	50%	3,833	1,916	1	No change	1	LED wallpack, 50W	1		80	\$ 150	\$ 10	153	15.5	
2	West Face	1	LED wallpack, 50W	1	80	Photocell	50%	3,833	1,916	1	No change	1	LED wallpack, 50W	1		80	\$ 150	\$ 10	153	15.5	
		2	•		0.2	kW				2		2				0.2	kW				

SUMMARY OF SAVINGS BY MEASURE TYPE:

	Fixture	Energy S	Savings	kW				
Measure Type	Qty.	Controls kwh/year	Efficiency kwh/year	Reduction	Project Cost	Annual Savings	Payback (Years)	Measure Description
Photocell	2	307			\$ 300	\$ 19	15.5	
	0	307	0	0.0	\$ 300	\$ 19	15.5	
		307	kwh	_				

PAYBACK PERIOD:

 Estimated Cost Exterior Lighting:
 \$ 300
 = 15.5 year payback

 Annual Energy Savings (kWh + kW):
 \$ 19

CALCULATIONS TO INSULATE BUILDING ENVELOPE

EEM-7 Village of Medina

INPUT DATA:

Surface to be insulated:	Fire Chief Wall	
Area:	200	sq ft
Present R value:	10.0	
Revised R value	20.0	
Present U factor::	0.100	Btuh/sq ft-deg F
Revised U factor:	0.050	Btuh/sq ft-deg F
Present U x Area	20	20 UA Total present
Proposed U x Area	10	10 UA Total proposed

CALCULATIONS:	Occupied	Unoccupied	Fuel Data	Heating	Cooling
Heating Setpoint:	66	65	Туре:	Natural Gas	Electricity
Cooling Setpoint:	71	75	Units:	therm	kwh
Q internal gains (Btuh):	58,495	22,534	Unit cost:	\$ 0.770	\$ 0.063
BLC (Btuh/degree F):	4,552	2,716	BTU/unit	100,000	3,412
T Balance (°F.):	53.3	56.5	Efficiency/ COP:	84.2%	293.1%
T Balance = T Setpoint - (Q inter	nal gains / BLC)		EER:		10.0

Bin Mid-Pt.	Occupied Hours	Unoccupied Hours	Change in Occupied Heat Loss	Change in Unoccupied Heat Loss	Heating Savings therm	Cooling Savings kwh
(7.5)	3	0	737	723	0	0
(2.5)	3	7	687	673	0	0
2.5	21	13	637	623	0	0
7.5	76	32	587	573	1	0
12.5	150	73	537	523	1	0
17.5	293	89	487	473	2	0
22.5	306	115	437	423	2	0
27.5	315	141	387	373	2	0
32.5	481	176	337	323	3	0
37.5	721	250	287	273	3	0
42.5	500	177	237	223	2	0
47.5	372	177	187	173	1	0
52.5	320	115	137	123	1	0
57.5	491	244	0	0	0	0
62.5	655	295	0	0	0	0
67.5	621	199	0	0	0	0
72.5	411	64	(17)	0	0	1
77.5	480	19	(67)	(25)	0	3
82.5	285	4	(117)	(75)	0	3
87.5	57	0	(167)	(125)	0	1
92.5	9	0	(217)	(175)	0	0
97.5	0	0	(267)	(225)	0	0
102.5	0	0	(317)	(275)	0	0
107.5	0	0	(367)	(325)	0	0
	8,760	hours		Energy Savings:	19	9

IMPLEMENTATION COST & PAYBACK PERIOD:

	Material & Labor		
Item	(\$ / sq ft)	Quantity	Total
Fire Chief Wall	\$ 1.18	200	\$ 236
Implementation		¢ ၁၁¢	= 15.9 year payback
Implementation Co	JSL.	Ş 230	= 15.9 year payback
Annual Energy Savi	ings:	\$ 15	

\$ 14

\$1

CALCULATIONS TO INSTALL DOUBLE GLAZING

EEM-8 Village of Medina

	Type: Units:	Natural Gas therm	
	Unit cost:	\$ 0.770	/therm
	Heat Content of Fuel	100,000	Btu/therm
	Combustion Efficiency:	84%	
Occupied	Lineasuriad		

_	Occupied	Unoccupied	_			
T Setpoint:	66	65	degrees F			
Q internal gains:	58,495	22,534	Btuh			
BLC:	4,552	2,716	Btuh/degree F			
T Balance:	53.3	56.5	degrees F			
T Balance = T Setpoint - (Q internal gains / BLC)						

Glazing Information

DATA:

	Firehouse Kitchen Window		
Present Conditions	Fixed Double Gl	azes	
Present Area:	36	sq ft	
U factor:	0.50	Btuh/sq ft-deg F	
Crack Length:	26	feet	
Present Infiltration:	30	cfh	
Proposed Condition	Double glazed windows	casement	
Proposed Area:	36	sq ft	
New U factor:	0.28	Btuh/sq ft-deg F	
New Crack Length:	26	feet	
Proposed Infiltration:	5	cfh	

Bin Data for Rochester, 126 hrs./week				Average	
				O.A. Temp	Temp
			Accum	below	Difference
	T Setpoint	T Balance	Hours	T Balance	(T Set- Avg OAT)
Occupied	66	53.3	3,561	34.1	32.0
Unoccupied	65	56.5	1,365	33.9	31.0

CALCULATIONS:

Conduction Savings = $(AreaPr \times Upr) - (AreaRev \times Urev + AreaInfill \times Uinfill) \times Accum Hours \times Temp Different$ $Infiltration Savings = <math>1/2 \times 0.018 \times \{(LengthPr \times Ipr) - (Length Rev \times Irev)\} \times Accum Hours \times Temp Different$ $Energy Cost Savings = (Energy Savings / Conversion Factor) \times (Unit cost / Efficiency)$

	Conduction	Infiltration	Total	Total Annual	Energy
	Savings	Savings	Savings	Fuel Savings	Cost Savings
Winter	(Btu/year)	(Btu/year)	(Btu/year)	(therm/year)	(\$/year)
Occupied	904,000	668,000	1,572,000	19	\$ 14
Unoccupied	335,000	247,000	582,000	7	\$ 5
Annual Savings:	1,239,000	915,000	2,154,000	26	\$ 20

IMPLEMENTATION COST & PAYBACK PERIOD:

	Material & Labo	r		
Item	\$ / sq. ft.	Quantity	Total	
Vinyl Single Hung Windows	\$ 26	36	\$ 938	
Removals	\$ 30	2	\$ 60	
	Implementation Cost:		\$ 998	= 50.7 year payback
	Annual Energy S	avings:	\$ 20	

CALCULATIONS TO INSTALL A TANKLESS WATER HEATER EEM-9 Village of Medina

INPUT DATA:

INFOT DATA.	Present Fuel		Proposed Fuel		
Fuel:	Natural Gas		Electricity		
Units:	therm		kwh		
Fuel Cost:	\$ 0.77	per therm	\$ 0.06	per kwh	
BTU / unit:	100,000	Btu per therm	3,412	Btu per kwh	
kW Demand cost:	\$ 0.00	per kW	\$ 14.82	per kW	
Average kW demand:	0.0	kW	0.0	kW	
Demand Diversity:	33%		90%		
Net kW Demand Savings:	-	kW per month	0.0	kW per month	
Months of demand:	12	per year	12	per year	
Annual DHW Consumption:	Present		Proposed		
Hot Water Usage:	0.5	Gallons/person	0.5	Gallons/person	
Number of persons:	9	(estimate)	9	(estimate)	
Days of Usage:	250	per year	250	per year	
Hours of Usage per Day:	8	hours	8	hours	
Average inlet water Tem		degrees F		degrees F	
Average hot water temp:	125	degrees F	125	degrees F	
Storage Tank Losses:	Present Tank		Proposed Tank		
Tank U factor:		Btu/SF/Hour	0.15	Btu/SF/Hour	
Height of Tank:		inches		inches	
Diameter of Tank:		inches		inches	
		gallons/tank		gallons/tank	
# of Tanks		Qty.		Qty.	
Hours Tank is Hot:		Hours	8,760		
Water Temperature: Ambient Temperature:		Deg. F. Deg. F.	125 65		
		0		DTU	
Recirculation Losses:		of boiler capacity =		BTUh	4000/
	U	hours/year	8,760	hours/year =	100%
Boiler Jacket & Flue Losses:					
Burner Input	40,000	BTUH	40,000	BTUH	
COP:	0.80		2.50		
Boiler Output Capacity	32,000	BTU output	100,000	BTU output	
Jacket & Flue Losses:		of boiler capacity	0.0%	of boiler capacity	
Boiler is Hot:	8,760	hours/year	8,760	hours/year =	100%
CALCULATIONS:	_		- ·		
	Present		Proposed		
Consumption Energy:	657,658	BTU output rqd/yr	657,658	BTU output rqd/y	r
Tank Energy Losses:	1,729,995	BTU/year	0	BTU/year	
Recirculation Losses:	0	BTU/year	0	BTU/year	
Boiler Jacket Losses:	1,401,600	BTU/year		BTU/year	
Output BTU/Year	3,789,253		657,658		
Annual Fuel Consumption	47	therm	77	kwh	
Demand		billed kW /yr.		kW	
Annual Fuel Cost	\$ 36		\$ 11	-	
Annual Savings:	47	therm	\$ 25	per year	
	(77)	kwh			
	(0)	billed kW /yr.			
IMPLEMENTATION COST & PAYBACK PE	RIOD:				

Item	Quantity	Matl. & Labor Cost	Total	
Tankless Water Heater	1	\$ 3,176	\$ 3,176	
	Implementatio	Implementation Cost:		= 124.8 year payback
	Annual Energy Savings:		\$ 2 5	

CALCULATIONS TO SWITCH FUELS FOR HEATING WATER

EEM-10 Village of Medina

INPUT DATA:

INFOT DATA.	Brocopt Fuel		Proposed Fuel		
Fuel:	Present Fuel Natural Gas		Electricity		
Units:	therm		kwh		
Fuel Cost:		per therm		per kwh	
BTU / unit:		Btu per therm		Btu per kwh	
kW Demand cost:		per kW	\$ 14.82		
Average kW demand:		kW		kW	
Demand Diversity:	33%		90%		
Net kW Demand Savings:	-	kW per month		kW per month	
Months of demand:	12	per year		per year	
Annual DHW Consumption:	Present		Proposed		
Hot Water Usage:	0.5	Gallons/person	0.5	Gallons/person	
Number of persons:	9	(estimate)	9	(estimate)	
Days of Usage:	250	per year	250	per year	
Hours of Usage per Day:	8	hours	8	hours	
Average inlet water Temp:	55	degrees F	55	degrees F	
Average hot water temp:	125	degrees F	125	degrees F	
Storage Tank Losses:	Present Tank		Proposed Tank		
Tank U factor		Btu/SF/Hour	0.15	Btu/SF/Hour	
Height of Tank		inches		inches	
Diameter of Tank		inches		inches	
		gallons/tank		gallons/tank	
# of Tank		Qty.		Qty.	
Hours Tank is Hot	-,	Hours	8,760		
Water Temperature Ambient Temperature		Deg. F. Deg. F.	125 65		
Recirculation Losses:		of boiler capacity =		BTUh	
		hours/year		hours/year =	100%
Boiler Jacket & Flue Losses:					
Burner Inpu	t 40,000	BTUH	40,000	BTUH	
COP			2.50	COP	
Boiler Output Capacit		BTU output		BTU output	
Jacket & Flue Losses	•	of boiler capacity		of boiler capacity	
Boiler is Hot		hours/year		hours/year =	100%
CALCULATIONS:					
	Present		<u>Proposed</u>		
Consumption Energy:	-	BTU output rqd/yr		BTU output rqd/yr	
Tank Energy Losses:		BTU/year		BTU/year	
Recirculation Losses:		BTU/year		BTU/year	
Boiler Jacket Losses:	1,401,600	BTU/year		BTU/year	
Output BTU/Year	2,059,258		657,658		
Annual Fuel Consumption	n 26	therm	77	kwh	
Deman		billed kW /yr.	0	kW	
Annual Fuel Cos		· •	\$ 11		
Annual Savings:		therm		per year	
		kwh	• -	· ·	
	(0)	billed kW /yr.			
IMPLEMENTATION COST & PAYBACK PE	RIOD:				
Item	Quantity	Matl. & Labor Cost	t Total	-	
Tankless Water Heater	1	\$ 3,176	\$ 3,176	_	
	Implementation	n Cost:	\$ 3,176	= 361.2 year pa	yback

Tankless Water Heater	1	\$ 3,176	\$ 3,176	
	Implementatio	n Cost:	\$ 3,176	= 361.2 year payback
	Annual Energy	Savings:	\$ 9	

r

	-	<u>F</u>	uel Information			
Building Information	Small Office			Heating	Cooling	
Location	Buffalo	Climate Zone 5	Type: I	Natural Gas	Electricity	
Portion of Building HP will serve:	16%		Units:	therm	kwh	
Building Heating Load (BHL)	53,665	BTU/h	Unit cost:	\$ 0.770	\$ 0.063	/kwh
Building Cooling Load (BCL)	33,005	BTU/h	BTU/unit	100,000	3,412	/kwh
BEFLHheating	1,413	Hours	Heating Eff.	86%	\$ 14.82	/kW
BEFLHcooling	713	Hours	CO2	11.72	1.16	lbs/unit
Existing System						
Is baseline heating system electric?		Ν				
Is baseline heating system fossil fuel?		Y				
If yes, will it remain in place in the eff	ficient case?	Ν				
Present Heating System	Narm Air Furnace, Gas Fire	ed < 225 kBTU/h				
Present Cooling System	ir-cooled AC w/ other heat(≥ 65 and < 135 kBTU/	/h)			
% of Portion to be served by ASHP th	at is presently cooled	0%				
Proposed System						
Does proposed ASHP require supplen	nental resistance heat?	Y				
ASHP Type	Central Ducted					
ASHP Application	Whole	(the ASHP will mee	et all of the heat	ing load)		
Control Type	Integrated/Modulating					
Heating Capacity	60,000	BTU/h at 5°F	1.0	HP Sizing Ra	atio	
Energy Efficiency Ratio	13.1	EERee				
Seasonal Energy Efficiency Ratio	15.0	SEER				
Heating Season Performance Factor	10.0	HSPF				

CALCULATIONS TO INSTALL CLEAN HEATING SYSTEM - AIR SOURCE HEAT PUMP BE-1 Village of Medina

Resulting system to be modeled

Scenario 1d

8-7						
Cen	tral Ducted ASH	P with Integrated/ I	Modulating contro	ls sized to	o 100%	
Adjusted Efficiency Values	Baseline	Energy Efficient				
SEERbaseline	12.7	13.9	EERseason,ee	-1.670 (с	cooling offset
EERbaseline	11.0	13.1	EERee	1.041	d	cooling slope
COPseason, baseline	1.00	2.59	COPseason,ee	0.081 a	а	heating offset
FElecHeat	0.00	1.00	FElecHeat,new	0.876	b	heating slope
EFFbaseline	0.86	1.00	Fload,cooling			
FFuelHeat	1.00	1.00	Fload, heating			
		1.00	Fload,heating,FuelH	eat	0.69	CF
		1.00	Fload, heating, ElecH	eat		
					Savings	Savings

	Baseline	Energy Efficient	Savings	Units	\$	CO2 Lbs/yr.
Cooling Electric Use (kWh/yr.)	0	1,687	(1,687)	kWh		
Heating Electric Use (kWh/yr.)	0	8,574	(8,574)	kWh		
Total Electric Use (kWh/yr.)	0	10,261	(10,261)	kWh	(\$ 646)	(11,903)
Peak Demand (kW)	0.0	1.7	(1.7)	kW	(\$ 600)	
Fossil Fuel Energy Use (MMBTU)	88	0	88	MMBtu		
Fossil Fuel Energy Use : therm	881	0	881	therm	\$ 679	10,331
Annual Energy Costs	\$ 679	\$ 1,246	(\$ 568)		(\$ 568)	(1,572)
Estimated Project Cost	\$ 2,950	per ton =	\$ 13,192	_	-23 year paybac	k

Appendix D

Assumptions/Data Used to Develop Energy and Dollar Savings Figures

Building and Occupancy Information

Dunung anu C	secupancy	mormation	-				-		
Floor Area:	21 411	square feet		Avg. # of	Heating	Cooling	% of base el	ectricity use re	sulting in
noor Area.	21,411	•	l	occupants	Setpoint	Setpoint		ernal heat gain	S
			days /occupied	9	66	71	days	100%	
		nigh	nts/unoccupied	0	65	75	nights	100%	
			# of computers	9		-			
Interior lighting,	people and occ				50	hours per wee			
			ectricity use at r	• ,			ectricity use du	ring day period	S
		(Inis results in	an average day	time KW that is	90%	of the peak me	etered KW)		
Heating Syste	m Informati	on							
Heating Syste									
		%	of bldg. served	COP heat	EER	Heat kBTUH	Heating Fuel	Efficiency	
Primary system:	Forced Air		60%	0.80	10.00	548	Natural Gas	84% I	t
Secondary:	Condensing Bo	oiler	40%	0.95	10.00	167	Natural Gas	92.0% I	Et
	80%	of building is a	ir conditioned	Does the cool	ling system ha	ve economizer?	No		
		0			0,				
Describe the dire	ct outsido air o	r control make	un air system:	Fuel Natural Gas	80%	Eff.	950 1	EER for DOAS	
Describe the dire		<u>central make-</u>	up all system.		cfm outside a		9.50	EER IOI DOAS	
					hours / week		heat recovery e	fficiency	
Domestic Hot	Water			Ŭ	nours / week	070		merciney	
Domestic not	water	Fuel	Efficiency						
DHW system ener	gy type	Natural Gas	80%	Is the	re a pump to ci	rculate DHW?	No		
Hot Water usage	is	0.5	gallons per	person	/ day for	9	persons on	250 0	days/year
Weather & Sc	hedule Info	rmation:					_		
Select nearest we	ather station f	or bin data:		ROCH	ESTER		for TRM:	Buffa	lo
Base temperature			65	°F. yields	6,664	HDD base65	for TRM:	Small (Office
Base temperature		• .		°F. yields	,	CDD base70	for TRM:	AC with G	as Heat
	Ū								
Present Schedule	for Occupied/	Day HVAC setpo	oints			Proposed Sche	dule for Occupie	ed/Day HVAC s	etpoints
Day of week		Start	End	Hours		Day of week	Start	End	Hours
Sun	1	4:00 AM	10:00 PM	18.0		1	4:00 AM	10:00 PM	18.0
Mon	2	4:00 AM	10:00 PM	18.0		2	4:00 AM	10:00 PM	18.0
Tue	3	4:00 AM	10:00 PM	18.0		3	4:00 AM	10:00 PM	18.0
Wed	4	4:00 AM	10:00 PM	18.0		4	4:00 AM	10:00 PM	18.0
Thu	5	4:00 AM	10:00 PM	18.0		5	4:00 AM	10:00 PM	18.0
Fri	6	4:00 AM	10:00 PM	18.0		6	4:00 AM	10:00 PM	18.0
Sat	7 (week	4:00 AM	10:00 PM	18.0	-	7 Dechaster 12	4:00 AM	10:00 PM	18.0
Rochester, 126 hr	s./week			126.0 42.0		Rochester, 120	D NrS./WEEK		126.0
				42.0					

ESTIMATE OF BUILDING LOAD COEFFICIENT & TRUE-UP TO BILLED ENERGY USE

Village of Medina
600 Main St
Medina, NY 14103

Building Information			
Width (typical)	97 feet	Building Floor Area	21,411 sq.ft.
Equivalent Length	171 feet	Roof Area	8,313 sq. ft.
Number of Floors	1.3 floors	Gross Wall Area	15,736 sq.ft.
Avg. Floor to Floor Height Roof or Ceiling rise is	12 feet per floor 4 feet in 12' run	Building Volume	248,619 cubic feet

Estimate of Conductive Heat Loss

					U x A	% of BLC
<u>Surface</u>		<u>Area</u>	<u>R-value</u>	<u>U Factor</u>	<u>Btuh/deg. F.</u> w	/o ventilation
Roof	n/a	8,313	31.1	0.032	268	10%
Walls	91.4% of GWA	14,382	23.7	0.042	607	22%
Town Hall	2.7% of GWA	430	2.0	0.500	215	8%
Fire Hall	1.6% of GWA	256	2.0	0.500	128	5%
Garage	5 10x10 doors	500	5.0	0.200	100	4%
Man	8 3x7 doors	168	3.0	0.333	56	2%
	Total Exterior Surface Area	24,049 sq.ft	t.		1,374	51%

		ACH	equiv. cfm	Btuh/deg. F.	BLC (without ve	entilation)
Est. Infiltration Rate	Occupied	0.30	1,243	1,343	2,716	Btuh/deg. F. Occupied
Est. Infiltration Rate	Unoccupied	0.30	1,243	1,343	2,716	Btuh/deg. F. Unoccupied
Est. Ventilation Rate Est. Ventilation Rate	Occupied Unoccupied	cfm 1,700	Fraction 100% 100%	Btuh/deg. F. 1,836 0		Ventilation Btuh/deg. F. Occupied Btuh/deg. F. Unoccupied

Heat Gain Estimation

Estimated Solar Gain	0% of building heat loss during occupied periods will be met by solar gains					
		kW	# People	Total BTUH	Hours/wk.	
Loads & People	Occupied	16.5	9	58 <i>,</i> 495	50.0	
	Unoccupied	6.6	0	22,534	118.0	

Village of Mec	lina				Fuel Data	Heating	Cooling	
500 Main St					Type:	Natural Gas	Electricity	Economizer?
Medina, NY 14	103				Units:	therm	kwh	No
			Current		Unit cost:	\$ 0.770	\$ 0.063	
leating T Setp	oint:	Occupied	66	deg. F.	BTU/unit	100,000	3,412	
		Unoccupied	65	deg. F.	Nom. Eff, COP	0.860	2.931	COP
Cooling T Setp	oint:	Occupied	71	deg. F.	Avg. Eff, COP	0.842	4.56	Avg. COP
		Unoccupied	75	deg. F.			15.5	Avg. EER
HVAC Schedul	е	Occupied	126	Hrs. per week			80%	of bldg. cooled
		Unoccupied	42	Hrs. per week		Γ	DOAS Er	nergy Use
Q internal gai	ns:	Occupied	58,495	Btuh			0	cfm
		Unoccupied	22,534	Btuh			0%	heat recov. Eff
Q internal gai	ns:	Schedule	50	Hrs. per week			Heating	Natural Gas
BLC:		Occupied	4,552	Btuh/deg. F.			100,000	Btu/therm
		Unoccupied	2,716	Btuh/deg. F.				eff.
		•		-			2.78	COP cool
Current		Rochester, 126	5 hrs./week				0	hrs/week
Bin Mid Pt.	Occupied Hours	Unoccupied Hours	Occ Net Heat Loss BTUH	Unocc Net Heat Loss BTUH	Heating Fuel Use therm	Cooling Energy kwh	DOAS Hours	DOAS Heating kBtu/yr.
(7.5)	3	0	298,602	173,961	11	0	0	
(2.5)	3	7	275,840	160,379	23	0	0	
2.5	21	13	253,078	146,796	86	0	0	
7.5	76	32	230,316	133,214	259	0	0	
12.5	150	73	207,553	119,632	474	0	0	
17.5	293	89	184,791	106,050	756	0	0	
22.5	306	115	162,029	92,467	716	0	0	
27.5	315	141	139,267	78 <i>,</i> 885	653	0	0	
32.5	481	176	116,504	65,303	803	0	0	
37.5	721	250	93,742	51,721	957	0	0	
42.5	500	177	70,980	38,138	502	0	0	
47.5	372	177	48,218	24,556	265	0	0	
52.5	320	115	25,455	10,974	112	0	0	
57.5	491	244	2,693	0	16	0	0	
62.5	655	295	0	0	0	0	0	
67.5	621	199	(50,088)	(19,675)	0	1,578	0	
72.5	411	64	(86,227)		0	1,840	0	
77.5	480	19	(112,161)	(53,829)	0	2,875	0	
82.5	285	4	(150,360)	(73,932)	0	2,451	0	
87.5	57	0	(192,274)	(95,603)		677		+
92.5 97.5	9	0	(206,279)	(105,487)	0	125 0	0	
97.5	0	0	(158,533) (181,296)	(83,540) (97,123)	0	0	0	
102.5	0	0	(204,058)	(110,705)	0	0	0	
207.5	8,760		(204,038)	(110,703)	5,630	9,546	DOAS fuel use	
	0,700	nours			5,030	5,540		

Cross Check Against Historic Consumption

	Historic	Calculated	Difference
Present Annual Heating Fuel Use is	560 mmBTU	563	100% of present fuel use

Appendix E

Clean Heating and Cooling Technology Overview

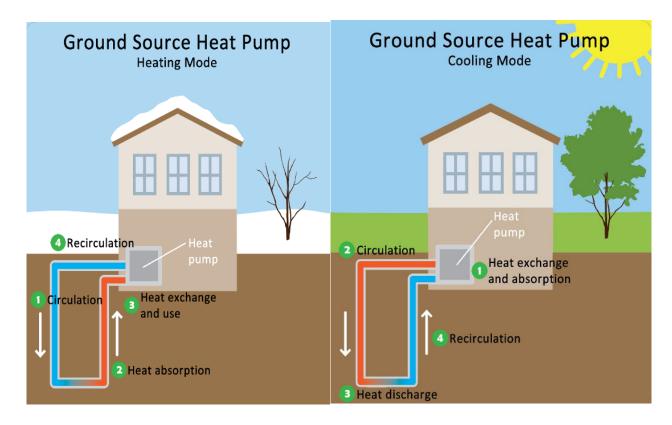
BENEFITS OF CLEAN HEATING AND COOLING (CHC) TECHNOLOGIES

Commercial building owners are becoming increasingly aware of how their choice of HVAC system impacts bottom line operating costs and the environment. Most conventional heating systems either burn fuel or convert electricity into heat. CHC technologies, such as heat pumps, are different because they don't generate heat. Instead, they move existing heat energy from outside into your facility, which makes them more efficient since they deliver more heat energy than the electrical energy they consume.

There are many compelling reasons to install a CHC System in commercial buildings.

CHC systems:

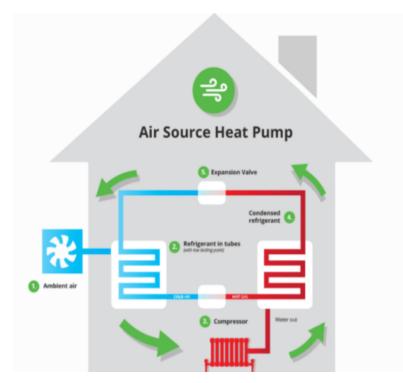
- Can cost less to run than a traditional fossil fuel heating system.
- Integrate well with renewable and resilient building designs
- Offer the highest efficiency and most cost-effective space conditioning for HVAC
- Offer reduced maintenance costs because the exterior equipment is buried underground
- Offers flexible design and installation with many configurations available.
- Provides superior thermal comfort for all seasons.


TYPES OF CLEAN HEATING AND COOLING (CHC) TECHNOLOGIES

What is a Ground Source Heat Pump (GSHP)?

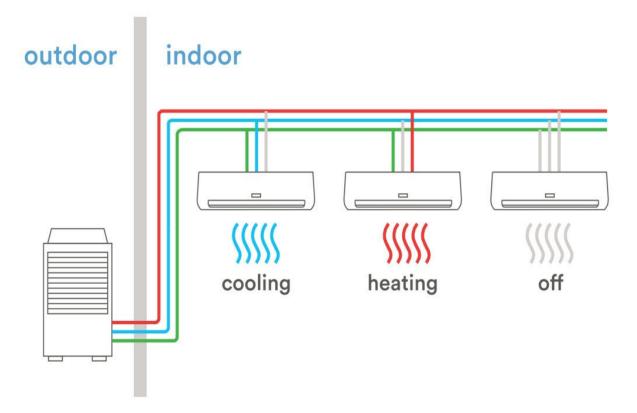
GSHP's are self-contained electrically powered systems that provide heating and cooling more efficiently than other types of conventional HVAC systems. This increase in efficiency is obtained due to the GSHP systems coupling with the earth's relatively stable ground temperature. For example, while the temperature of the outside air may vary drastically from summer to winter, the ground temperature remains relatively stable, making it an ideal heat "source" for heating and heat "sink" for cooling.

The GSHP system utilizes an electric vapor compression refrigeration cycle to exchange energy between the building load and a ground coupled loop. When in heating mode, energy is transferred from the low temperature ground loop source to the higher temperature heat sink (the load).


The system reverses during cooling, where the energy is absorbed by the ground loop.

Source: https://www.epa.gov/rhc/geothermal-heating-and-cooling-technologies

What is an Air Source Heat Pump (ASHP)?


An air source heat pump works much like a refrigerator operating in reverse. Outside air is blown over a network of tubes filled with a refrigerant. This warms up the refrigerant, and it turns from a liquid into a gas. This gas passes through a compressor, which increases the pressure. Compression also adds more heat – similar to how the air hose warms up when you top up the air pressure in your tires. The compressed, hot gases pass into a heat exchanger, surrounded by cool air or water. The refrigerant transfers its heat to this cool air or water, making it warm. And this is circulated around your facility to provide heating and hot water. Meanwhile, the refrigerant condenses back into a cool liquid and starts the cycle all over again.

Source: <u>https://www.ways2gogreenblog.com/2017/10/18/a-brief-introduction-to-air-source-heat-pumps/</u>

What is a Variable Refrigerant Flow (VRF)?

VRF systems use heat pumps or heat recovery systems to provide heating and cooling for all indoor and outdoor units without the use of air ducts. With a VRF system, your building will have multiple indoor units utilized by a single outdoor condensing unit, either with a heat pump or heat recovery system. A VRF HVAC system can heat and cool different zones or rooms within a building at the same time. If the appropriate VRF system is selected, building occupants have the ability to customize the temperature settings to their personal preferences. VRF equipment can be used in conjunction with a wide range of heating and cooling products. This means that a VRF system can be scaled to meet the climate control needs.

Source: <u>https://be-exchange.org/tech_primer/tech-primer-variable-refrigerant-flow-vrf-systems/</u>

Appendix F

Energy Savings Summaries

Energy Efficiency Measures			GHG	Electric Savings			Fuel Savings			\$ Savings & Cost			
EEM #	Measure Status	EEM Category	EEM Description	CO2e Lbs./Yr.	kWh	kW	Electric Cost Savings	Fuel Type	Fuel MMBtu Sav ings	Fuel Cost Sav ings	Total Annual Savings	Install Costs	Simple Payback (years)
EEM-1	R	Lighting	Interior Lighting Retrofit	11,758	12,703	5.5	\$ 1,778	Natural Gas	(25.4)	(\$ 196)	\$ 1,582	\$ 3,406	2.2
EEM-2	R	Controls	Implement Deeper Setback	1,143	36	0.0	\$ 2	Natural Gas	9.4	\$ 72	\$ 75	\$ 400	5.4
EEM-3	R	HVAC	Insulate Heating And Domestic Hot Water Pipes	277	0	0.0	(\$ 0)	Natural Gas	2.4	\$ 18	\$ 18	\$ 182	10.0
EEM-4	R	Env elope	Building Airflow Reduction	2,924	0	0.0	\$0	Natural Gas	24.9	\$ 192	\$ 192	\$ 2,196	11.4
EEM-5	R	Env elope	Install Insulated Doors	1,011	38	0.0	\$ 2	Natural Gas	8.3	\$ 64	\$ 66	\$ 790	12.0
EEM-6	R	Lighting	Exterior Lighting Retrofit	356	307	0.0	\$ 19		0.0	\$0	\$19	\$ 300	15.5
EEM-7	R	Env elope	Insulate Building Envelope	228	9	0.0	\$1	Natural Gas	1.9	\$14	\$15	\$ 236	15.9
EEM-8	RNE	Env elope	Install Double Glazing	300	0	0.0	\$ O	Natural Gas	2.6	\$ 20	\$ 20	\$ 998	50.7
EEM-9	NR	DHW	Install A Tankless Water Heater	466	(77)	(0.0)	(\$ 11)	Natural Gas	4.7	\$ 36	\$ 25	\$ 3,176	124.8
EEM-10	NR	DHW	Switch Fuels For Heating Water	212	(77)	(0.0)	(\$ 11)	Natural Gas	2.6	\$ 20	\$9	\$ 3,176	361.2
		Το	otal of Recommended Measures:	17,995	13,092	5.5	\$ 1,803		24.0	\$ 184	\$ 1,987	\$ 8,508	4.3

Building Electrification Measures				Savings & Cost									
EEM #	Measure Status	EEM Category	Building Electrification Measure Descriptions	CO2e Lbs./Yr.	kWh	kW	Electric Cost Savings	Fuel Type	Fuel MMBtu Sav ings	Fuel Cost Sav ings	Total Annual Savings	Install Costs	Simple Payback (years)
BE-1	NR	ASHP	Install Clean Heating System - Air Source Heat Pump	(1,572)	(10,261)	(1.7)	(\$ 1,246)	Natural Gas	88.1	\$ 679	(\$ 568)	\$ 13,192	n/a
		To	otal of Recommended Measures:	0	0	0.0	\$ 0		0.0	\$ O	\$ 0	\$ 0	-